"

194 Amniotic Animals

Learning Outcomes

  • Identify the classes of animals that are amniotes
  • Describe the main characteristics of amniotes

In the past, the most common division of amniotes has been into the classes Mammalia, Reptilia, and Aves. Birds are directly descended, however, from dinosaurs, so this classical scheme results in groups that are not true clades. We will consider birds as a group distinct from reptiles for the purpose of this discussion with the understanding that this does not completely reflect phylogenetic history and relationships. Instead, modern phylogenetics places birds and reptiles into a larger clade together, though birds (not reptiles) are the true descendants of dinosaurs.

The amniotes —reptiles, birds, and mammals—are distinguished from amphibians by their terrestrially adapted egg, which is protected by amniotic membranes. The evolution of amniotic membranes meant that the embryos of amniotes were provided with their own aquatic environment, which led to less dependence on water for development and thus allowed the amniotes to branch out into drier environments. This was a significant development that distinguished them from amphibians, which were restricted to moist environments due their shell-less eggs. Although the shells of various amniotic species vary significantly, they all allow retention of water. The shells of bird eggs are composed of calcium carbonate and are hard, but fragile. The shells of reptile eggs are leathery and require a moist environment. Most mammals do not lay eggs (except for monotremes). Instead, the embryo grows within the mother’s body; however, even with this internal gestation, amniotic membranes are still present.

Characteristics of Amniotes

The illustration shows an egg with the shell, embryo, yolk, yolk sac, and the extra-embryonic membranes
Figure 1. The key features of an amniotic egg are shown.

The amniotic egg is the key characteristic of amniotes. In amniotes that lay eggs, the shell of the egg provides protection for the developing embryo while being permeable enough to allow for the exchange of carbon dioxide and oxygen. The albumin, or egg white, provides the embryo with water and protein, whereas the fattier egg yolk is the energy supply for the embryo, as is the case with the eggs of many other animals, such as amphibians. However, the eggs of amniotes contain three additional extra-embryonic membranes: the chorion, amnion, and allantois (Figure 1).

Extraembryonic membranes are membranes present in amniotic eggs that are not a part of the body of the developing embryo. While the inner amniotic membrane surrounds the embryo itself, the chorion surrounds the embryo and yolk sac. The chorion facilitates exchange of oxygen and carbon dioxide between the embryo and the egg’s external environment. The amnion protects the embryo from mechanical shock and supports hydration. The allantois stores nitrogenous wastes produced by the embryo and also facilitates respiration. In mammals, membranes that are homologous to the extra-embryonic membranes in eggs are present in the placenta.

Additional derived characteristics of amniotes include waterproof skin, due to the presence of lipids, and costal (rib) ventilation of the lungs.

Practice Question

Which of the following statements about the parts of an egg are false?

  1. The allantois stores nitrogenous waste and facilitates respiration.
  2. The chorion facilitates gas exchange.
  3. The yolk provides food for the growing embryo.
  4. The amniotic cavity is filled with albumen.
Show Answer

Statement d is false.

License

Icon for the Creative Commons Attribution 4.0 International License

Fundamentals of Biology I Copyright © by Lumen Learning is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.