224 The Muscular System

Learning Outcomes

  • Identify the structure and function of the muscular system

The muscular system is the biological system of humans that produces movement. The muscular system, in vertebrates, is controlled through the nervous system, although some muscles, like cardiac muscle, can be completely autonomous. Muscle is contractile tissue and is derived from the mesodermal layer of embryonic germ cells. Its function is to produce force and cause motion, either locomotion or movement within internal organs. Much of muscle contraction occurs without conscious thought and is necessary for survival, like the contraction of the heart or peristalsis, which pushes food through the digestive system. Voluntary muscle contraction is used to move the body and can be finely controlled, such as movements of the finger or gross movements like those of the biceps and triceps.

The structure of a skeletal muscle. A tendon attaches the muscle to the bone. The body of the muscle is called the epimysium. the interior of the muscle is divided into sections called endomysium, which are separated from each other by fascicle. There are blood vessels between endomysia. The endomysia are composed of muscle fibers. The Perimysium lays between the endomysium and the epimysium.
Figure 1. Muscle structure

Muscle is composed of muscle cells (sometimes known as “muscle fibers”). Within the cells are myofibrils; myofibrils contain sarcomeres which are composed of actin and myosin. Individual muscle cells are lined with endomysium. Muscle cells are bound together by perimysium into bundles called fascicles. These bundles are then grouped together to form muscle, and is lined by epimysium. Muscle spindles are distributed throughout the muscles, and provide sensory feedback information to the central nervous system.

Skeletal muscle, which involves muscles from the skeletal tissue, is arranged in discrete groups (Figure 1). An example is the biceps brachii. It is connected by tendons to processes of the skeleton. In contrast, smooth muscle occurs at various scales in almost every organ, from the skin (in which it controls erection of body hair) to the blood vessels and digestive tract (in which it controls the caliber of a lumen and peristalsis, respectively).

There are approximately 640 skeletal muscles in the human body. Contrary to popular belief, the number of muscle fibers cannot be increased through exercise; instead the muscle cells simply get bigger. It is however believed that myofibrils have a limited capacity for growth through hypertrophy and will split if subject to increased demand. There are three basic types of muscles in the body: smooth, cardiac, and skeletal (see Figure 2). While they differ in many regards, they all use actin sliding against myosin to create muscle contraction and relaxation. In skeletal muscle, contraction is stimulated at each cell by nervous impulses that releases acetylcholine at the neuromuscular junction, creating action potentials along the cell membrane. All skeletal muscle and many smooth muscle contractions are stimulated by the binding of the neurotransmitter acetylcholine. Muscular activity accounts for most of the body’s energy consumption. Muscles store energy for their own use in the form of glycogen, which represents about 1% of their mass. Glycogen can be rapidly converted to glucose when more energy is necessary.

Types

The smooth muscle cells are long and arranged in parallel bands. Each cell has a long, narrow nucleus. Skeletal muscle cells are also long but have striations across them and many small nuclei per cell. Cardiac muscles are shorter than smooth or skeletal muscle cells, and each cell has one nucleus.
Figure 2. Smooth muscle cells do not have striations, while skeletal muscle cells do. Cardiac muscle cells have striations, but, unlike the multinucleate skeletal cells, they have only one nucleus. Cardiac muscle tissue also has intercalated discs, specialized regions running along the plasma membrane that join adjacent cardiac muscle cells and assist in passing an electrical impulse from cell to cell.
  • Smooth muscle or “involuntary muscle” consists of spindle shaped muscle cells found within the walls of organs and structures such as the esophagus, stomach, intestines, bronchi, uterus, ureters, bladder, and blood vessels. Smooth muscle cells contain only one nucleus and no striations.
  • Cardiac muscle is also an “involuntary muscle” but it is striated in structure and appearance. Like smooth muscle, cardiac muscle cells contain only one nucleus. Cardiac muscle is found only within the heart.
  • Skeletal muscle or “voluntary muscle” is anchored by tendons to the bone and is used to effect skeletal movement such as locomotion. Skeletal muscle cells are multinucleated with the nuclei peripherally located. Skeletal muscle is called ‘striated’ because of the longitudinally striped appearance under light microscopy. Functions of the skeletal muscle include:
    • Support of the body
    • Aids in bone movement
    • Helps maintain a constant temperature throughout the body
    • Assists with the movement of cardiovascular and lymphatic vessels through contractions
    • Protection of internal organs and contributing to joint stability

Cardiac and skeletal muscle are striated in that they contain sarcomeres and are packed into highly-regular arrangements of bundles; smooth muscle has neither. Striated muscle is often used in short, intense bursts, whereas smooth muscle sustains longer or even near-permanent contractions.

Skeletal muscle is further divided into several subtypes:

  1. Type I, slow oxidative, slow twitch, or “red” muscle is dense with capillaries and is rich in mitochondria and myoglobin, giving the muscle tissue its characteristic red color. It can carry more oxygen and sustain aerobic activity.
  2. Type II, fast twitch, muscle has three major kinds that are, in order of increasing contractile speed:
    1. Type IIa, which, like slow muscle, is aerobic, rich in mitochondria and capillaries and appears red.
    2. Type IIx (also known as type IId), which is less dense in mitochondria and myoglobin. This is the fastest muscle type in humans. It can contract more quickly and with a greater amount of force than oxidative muscle, but can sustain only short, anaerobic bursts of activity before muscle contraction becomes painful (often attributed to a build-up of lactic acid). N.B. in some books and articles this muscle in humans was, confusingly, called type IIB
    3. Type IIb, which is anaerobic, glycolytic, “white” muscle that is even less dense in mitochondria and myoglobin. In small animals like rodents or rabbits this is the major fast muscle type, explaining the pale color of their meat.

For most skeletal muscles, contraction occurs as a result of conscious effort originating in the brain. The brain sends signals, in the form of action potentials, through the nervous system to the motor neuron that innervates the muscle fiber. However, some muscles (such as the heart) do not contract as a result of conscious effort. These are said to be autonomic. Also, it is not always necessary for the signals to originate from the brain. Reflexes are fast, unconscious muscular reactions that occur due to unexpected physical stimuli. The action potentials for reflexes originate in the spinal cord instead of the brain.

There are three general types of muscle contractions, matching the types of muscles: skeletal muscle contractions, heart muscle contractions, and smooth muscle contractions.

License

Icon for the Creative Commons Attribution 4.0 International License

Fundamentals of Biology I Copyright © by Lumen Learning is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book