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1. Set Theory 

It is natural for us to classify items into groups, or sets, and consider 
how those sets overlap with each other. We can use these sets 
understand relationships between groups, and to analyze survey 
data. 

Basics 

An art collector might own a collection of paintings, while a music 
lover might keep a collection of CDs. Any collection of items can 
form a set. 

Set 

A set is a collection of distinct objects, called 
elements of the set 

A set can be defined by describing the contents, or by 
listing the elements of the set, enclosed in curly 
brackets. 
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Example 1 

Some examples of sets defined by describing the 
contents: 

1. The set of all even numbers 
2. The set of all books written about travel to Chile 

Answers 

Some examples of sets defined by listing the elements of 
the set: 

1. {1, 3, 9, 12} 
2. {red, orange, yellow, green, blue, indigo, purple} 

A set simply specifies the contents; order is not important. The set 
represented by {1, 2, 3} is equivalent to the set {3, 1, 2}. 

Notation 

Commonly, we will use a variable to represent a set, to 
make it easier to refer to that set later. 

The symbol ∈ means “is an element of”. 
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A set that contains no elements, { }, is called the 
empty set and is notated ∅ 

Example 2 

Let A = {1, 2, 3, 4} 

To notate that 2 is element of the set, we’d write 2 ∈ A 

Sometimes a collection might not contain all the elements of a 
set. For example, Chris owns three Madonna albums. While Chris’s 
collection is a set, we can also say it is a subset of the larger set of 
all Madonna albums. 

Subset 

A subset of a set A is another set that contains only 
elements from the set A, but may not contain all the 
elements of A. 

If B is a subset of A, we write B ⊆ A 

A proper subset is a subset that is not identical to the 
original set—it contains fewer elements. 
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If B is a proper subset of A, we write B ⊂ A 

Example 3 

Consider these three sets: 

A = the set of all even numbers 
B = {2, 4, 6} 
C = {2, 3, 4, 6} 

Here B ⊂ A since every element of B is also an even 

number, so is an element of A. 

More formally, we could say B ⊂ A since if x ∈ B, then x ∈ 

A. 

It is also true that B ⊂ C. 

C is not a subset of A, since C contains an element, 3, that 
is not contained in A 

Example 4 

Suppose a set contains the plays “Much Ado About 
Nothing,” “MacBeth,” and “A Midsummer’s Night Dream.” 
What is a larger set this might be a subset of? 
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There are many possible answers here. One would be the 
set of plays by Shakespeare. This is also a subset of the set 
of all plays ever written. It is also a subset of all British 
literature. 

Try It Now 

The set A = {1, 3, 5}. What is a larger set this might be a 
subset of? 

Union, Intersection, and Complement 

Commonly sets interact. For example, you and a new roommate 
decide to have a house party, and you both invite your circle of 
friends. At this party, two sets are being combined, though it might 
turn out that there are some friends that were in both sets. 
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Union, Intersection, and Complement 

The union of two sets contains all the elements 
contained in either set (or both sets). The union is 
notated A ⋃ B. More formally, x ∊ A ⋃ B if x ∈ A or x ∈ B 

(or both) 

The intersection of two sets contains only the 
elements that are in both sets. The intersection is 
notated A ⋂ B. More formally, x ∈ A ⋂ B if x ∈ A and x ∈ B. 

The complement of a set A contains everything that is 
not in the set A. The complement is notated A’, or Ac, or 
sometimes ~A. 

Example 5 

Consider the sets: 

A = {red, green, blue} 
B = {red, yellow, orange} 
C = {red, orange, yellow, green, blue, purple} 

Find the following: 

1. Find A ⋃ B 
2. Find A ⋂ B 
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3. Find Ac⋂ C 

Answers 

1. The union contains all the elements in either set: A
⋃ B = {red, green, blue, yellow, orange} Notice we only 
list red once. 

2. The intersection contains all the elements in both 
sets: A ⋂ B = {red} 

3. Here we’re looking for all the elements that are not 
in set A and are also in C. Ac ⋂ C = {orange, yellow, 
purple} 

Try It Now 

Using the sets from the previous example, find A ⋃ C 
and Bc ⋂ A 

Notice that in the example above, it would be hard to just ask for 
Ac, since everything from the color fuchsia to puppies and peanut 
butter are included in the complement of the set. For this reason, 
complements are usually only used with intersections, or when we 
have a universal set in place. 
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Universal Set 

A universal set is a set that contains all the elements 
we are interested in. This would have to be defined by 
the context. 

A complement is relative to the universal set, 
so Ac contains all the elements in the universal set that 
are not in A. 

Example 6 

1. If we were discussing searching for books, the 
universal set might be all the books in the library. 

2. If we were grouping your Facebook friends, the 
universal set would be all your Facebook friends. 

3. If you were working with sets of numbers, the 
universal set might be all whole numbers, all integers, 
or all real numbers 
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Example 7 

Suppose the universal set is U = all whole numbers from 1 
to 9. If A = {1, 2, 4}, then Ac = {3, 5, 6, 7, 8, 9}. 

As we saw earlier with the expression Ac ⋂ C, set operations can be 
grouped together. Grouping symbols can be used like they are with 
arithmetic – to force an order of operations. 

Example 8 

Suppose H = {cat, dog, rabbit, mouse}, F = {dog, cow, duck, 
pig, rabbit}, and W = {duck, rabbit, deer, frog, mouse} 

1. Find (H ⋂ F) ⋃ W 
2. Find H ⋂ (F ⋃ W) 
3. Find (H ⋂ F)c ⋂ W 

Solutions 

1. We start with the intersection: H ⋂ F = {dog, 
rabbit}. Now we union that result with W: (H ⋂ F) ⋃ W 
= {dog, duck, rabbit, deer, frog, mouse} 

2. We start with the union: F ⋃ W = {dog, cow, rabbit, 
duck, pig, deer, frog, mouse}. Now we intersect that 
result with H: H ⋂ (F ⋃ W) = {dog, rabbit, mouse} 
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3. We start with the intersection: H ⋂ F = {dog, 
rabbit}. Now we want to find the elements of W that 
are not in H ⋂ F. (H ⋂ F)c ⋂ W = {duck, deer, frog, 
mouse} 

Venn Diagrams 

To visualize the interaction of sets, John Venn in 1880 thought to 
use overlapping circles, building on a similar idea used by Leonhard 
Euler in the eighteenth century. These illustrations now called Venn 
Diagrams. 

Venn Diagram 

A Venn diagram represents each set by a circle, 
usually drawn inside of a containing box representing 
the universal set. Overlapping areas indicate elements 
common to both sets. 

Basic Venn diagrams can illustrate the interaction of two or three 
sets. 
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Example 9 

Create Venn diagrams to illustrate A ⋃ B, A ⋂ B, and Ac ⋂ B 

A ⋃ B contains all elements in either set. 

A ⋂ B contains only those elements in both sets—in the 
overlap of the circles. 

Set Theory  |  19



Ac will contain all elements not in the set A. Ac ⋂ B will 
contain the elements in set B that are not in set A. 

Example 10 

Use a Venn diagram to illustrate (H ⋂ F)c ⋂ W 

We’ll start by identifying everything in the set H ⋂ F 
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Now, (H ⋂ F)c ⋂ W will contain everything not in the set 
identified above that is also in set W. 
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Example 11 

Create an expression to represent the outlined part of 
the Venn diagram shown. 

The elements in the outlined set are in sets H and F, but 
are not in set W. So we could represent this set as H ⋂ F ⋂ 
Wc 
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Try It Now 

Create an expression to represent the outlined 
portion of the Venn diagram shown 

Cardinality 

Often times we are interested in the number of items in a set or 
subset. This is called the cardinality of the set. 
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Cardinality 

The number of elements in a set is the cardinality of 
that set. 

The cardinality of the set A is often notated as |A| or 
n(A) 

Example 12 

Let A = {1, 2, 3, 4, 5, 6} and B = {2, 4, 6, 8}. 

What is the cardinality of B? A ⋃ B, A ⋂ B? 

Answers 

The cardinality of B is 4, since there are 4 elements in the 
set. 

The cardinality of A ⋃ B is 7, since A ⋃ B = {1, 2, 3, 4, 5, 6, 8}, 
which contains 7 elements. 

The cardinality of A ⋂ B is 3, since A ⋂ B = {2, 4, 6}, which 
contains 3 elements. 
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Example 13 

What is the cardinality of P = the set of English names for 
the months of the year? 

Answers 

The cardinality of this set is 12, since there are 12 months 
in the year. 

Sometimes we may be interested in the cardinality of the union or 
intersection of sets, but not know the actual elements of each set. 
This is common in surveying. 

Example 14 

A survey asks 200 people “What beverage do you drink in 
the morning”, and offers choices: 

• Tea only 
• Coffee only 
• Both coffee and tea 

Suppose 20 report tea only, 80 report coffee only, 40 
report both.   How many people drink tea in the morning? 
How many people drink neither tea or coffee? 
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Answers 

This 
question can most easily be answered by creating a Venn 
diagram. We can see that we can find the people who drink 
tea by adding those who drink only tea to those who drink 
both: 60 people. 

We can also see that those who drink neither are those 
not contained in the any of the three other groupings, so 
we can count those by subtracting from the cardinality of 
the universal set, 200. 

200 – 20 – 80 – 40 = 60 people who drink neither. 

Example 15 

A survey asks: “Which online services have you used in 
the last month?” 
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• Twitter 
• Facebook 
• Have used both 

The results show 40% of those surveyed have used 
Twitter, 70% have used Facebook, and 20% have used both. 
How many people have used neither Twitter or Facebook? 

Answers 

Let T be the set of all people who have used Twitter, and 
F be the set of all people who have used Facebook. Notice 
that while the cardinality of F is 70% and the cardinality of 
T is 40%, the cardinality of F ⋃ T is not simply 70% + 40%, 
since that would count those who use both services twice. 
To find the cardinality of F ⋃ T, we can add the cardinality 
of F and the cardinality of T, then subtract those in 
intersection that we’ve counted twice. In symbols, 

n(F ⋃ T) = n(F) + n(T) – n(F ⋂ T) 
n(F ⋃ T) = 70% + 40% – 20% = 90% 

Now, to find how many people have not used either 
service, we’re looking for the cardinality of (F ⋃ T)c . Since 
the universal set contains 100% of people and the 
cardinality of F ⋃ T = 90%, the cardinality of (F ⋃ T)c must be 
the other 10%. 

The previous example illustrated two important properties 
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Cardinality properties 

n(A ⋃ B) = n(A) + n(B) – n(A ⋂ B) 

n(Ac) = n(U) – n(A) 

Notice that the first property can also be written in an equivalent 
form by solving for the cardinality of the intersection: 

n(A ⋂ B) = n(A) + n(B) – n(A ⋃ B) 

Example 16 

Fifty students were surveyed, and asked if they were 
taking a social science (SS), humanities (HM) or a natural 
science (NS) course the next quarter. 

21 were taking a SS course 26 were taking a HM course 

19 were taking a NS course 9 were taking SS and HM 

7 were taking SS and NS 10 were taking HM and NS 

3 were taking all three 7 were taking none 

 

How many students are only taking a SS course? 
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Answers 

It might help to look at a Venn diagram. From the given 
data, we know that there are 3 students in region e and 7 
students in region h. 

Since 7 students were taking a SS and NS course, we 
know that n(d) + n(e) = 7. Since we know there are 3 
students in region 3, there must be 7 – 3 = 4 students in 
region d. 

Similarly, since there are 10 students taking HM and NS, 
which includes regions e and f, there must be 10 – 3 = 7 
students in region f. 

Since 9 students were taking SS and HM, there must be 9 
– 3 = 6 students in region b. 

Set Theory  |  29



Now, we know that 21 students were taking a SS course. 
This includes students from regions a, b, d, and e. Since we 
know the number of students in all but region a, we can 
determine that 21 – 6 – 4 – 3 = 8 students are in region a. 

8 students are taking only a SS course. 

Try It Now 

One hundred fifty people were surveyed and asked if 
they believed in UFOs, ghosts, and Bigfoot. 

43 believed in UFOs 44 believed in ghosts 

25 believed in Bigfoot 10 believed in UFOs and 
ghosts 

8 believed in ghosts and 
Bigfoot 

5 believed in UFOs and 
Bigfoot 

2 believed in all three 

How many people surveyed believed in at least one of 
these things? 
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2. Logic 

Logic is a systematic way of thinking that allows us to deduce new 
information from old information and to parse the meanings of 
sentences. You use logic informally in everyday life and certainly 
also in doing mathematics. For example, suppose you are working 
with a certain circle, call it “Circle X,” and you have available the 
following two pieces of information. 

1. Circle X has radius equal to 3. 
2. If any circle has radius r, then its area is πr2 square units. 

You have no trouble putting these two facts together to get: 

3. Circle X has area 9π square units. 

In doing this you are using logic to combine existing information 
to produce new information. Since a major objective in mathematics 
is to deduce new information, logic must play a fundamental role. 
This chapter is intended to give you a sufficient mastery of logic. 

It is important to realize that logic is a process of deducing 
information correctly, not just deducing correct information. For 
example, suppose we were mistaken and Circle X actually had a 
radius of 4, not 3. Let’s look at our exact same argument again. 

1. Circle X has radius equal to 3. 
2. If any circle has radius r, then its area is πr2 square units. 
3. Circle X has area 9π square units. 

The sentence “Circle X has radius equal to 3.” is now untrue, and 
so is our conclusion “Circle X has area 9π square units.” But the 
logic is perfectly correct; the information was combined correctly, 
even if some of it was false. This distinction between correct logic 
and correct information is significant because it is often important 
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to follow the consequences of an incorrect assumption. Ideally, we 
want both our logic and our information to be correct, but the point 
is that they are different things. 

In proving theorems, we apply logic to information that is 
considered obviously true (such as “Any two points determine 
exactly one line.”) or is already known to be true (e.g., the 
Pythagorean theorem). If our logic is correct, then anything we 
deduce from such information will also be true (or at least as true as 
the “obviously true” information we began with). 

Statements 

The study of logic begins with statements. A statement is a 
sentence or a mathematical expression that is either definitely true 
or definitely false. You can think of statements as pieces of 
information that are either correct or incorrect. Thus statements 
are pieces of information that we might apply logic to in order to 
produce other pieces of information (which are also statements). 

Example 1 

Here are some examples of statements. They are all true. 

If a circle has radius r, then its area is πr2 square 
units. 

Every even number is divisible by 2. 

 (2 is an element of the set of integers (or 
more simply, 2 is an integer).) 

 (The square root of 2 is not an integer.) 
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 (The set of natural numbers is a subset of 
the set of integers.) 

The set {0,1,2} has three elements. 

Some right triangles are isosceles. 

Example 2 

Here are some additional statements. They are all false. 

All right triangles are isosceles. 

5 = 2 

 (The square root of 2 is not a real 

number.) 

 (The set of integers is a subset of the set of 
natural numbers.) 

 (The intersection of the set 
{0,1,2} and the natural numbers is the empty set.) 

Example 3 

Here we pair sentences or expressions that are not 
statements with similar expressions that are statements. 
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NOT Statements Statements 

Add 5 to both sides. Adding 5 to both sides of x − 5 = 37 
gives x = 42. 

 (The set of 
integers) 

 (42 is an element of the 
set of integers.) 

42 42 is not a number. 

What is the solution 
of 2x = 84? The solution of 2x = 84 is 42. 

Example 4 

We will often use the letters P, Q, R, and S to stand 
for specific statements. When more letters are needed we 
can use subscripts. Here are more statements, designated 
with letters. You decide which of them are true and which 
are false. 

P : For every integer n > 1, the number 2n − 1 is 
prime. 
Q : Every polynomial of degree n has at most n roots. 
R : The function f(x) = x2 is continuous. 
S1 : 
S2 : 

Designating statements with letters (as was done above) is a very 
useful shorthand. In discussing a particular statement, such as “The 
function f(x) = x2 is continuous,” it is convenient to just refer to it as 
R to avoid having to write or say it many times. 
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Statements can contain variables. Here is an example. 
P : If an integer x is a multiple of 6, then x is even. 

This is a sentence that is true. (All multiples of 6 are even, so 
no matter which multiple of 6 the integer x happens to be, it is 
even.) Since the sentence P is definitely true, it is a statement. When 
a sentence or statement P contains a variable such as x, we 
sometimes denote it as P(x) to indicate that it is saying something 
about x. Thus the above statement can be denoted as 

P(x) : If an integer x is a multiple of 6, then x is even. 
A statement or sentence involving two variables might be 

denoted P(x, y), and so on. 
It is quite possible for a sentence containing variables to not be 

a statement. Consider the following example. 
Q(x) : The integer x is even. 

Is this a statement? Whether it is true or false depends on just 
which integer x is. It is true if x = 4 and false if x = 7, etc. But without 
any stipulations on the value of x it is impossible to say whether 
Q(x) is true or false. Since it is neither definitely true nor definitely 
false, Q(x) cannot be a statement. A sentence such as this, whose 
truth depends on the value of one or more variables, is called an 
open sentence. The variables in an open sentence (or statement) 
can represent any type of entity, not just numbers. Here is an open 
sentence where the variables are functions: 

R(f, g) : The function f is the derivative of the function g. 
This open sentence is true if f(x) = 2x and g(x) = x2. It is false if 

f(x) = x3 and g(x) = x2, etc. We point out that a sentence such as R(f, 
g) (that involves variables) can be denoted either as R(f, g) or just R. 
We use the expression R(f, g) when we want to emphasize that the 
sentence involves variables. 

We will have more to say about open sentences later, but for now 
let’s return to statements. 

Statements are everywhere in mathematics. Any result or 
theorem that has been proved true is a statement. The quadratic 
formula and the Pythagorean theorem are both statements: 

P : The solutions of the equation 
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. 

Q : If a right triangle has legs of lengths a and b and hypotenuse 
of length .. 

Here is a very famous statement, so famous, in fact, that it has 
a name. It is called Fermat’s last theorem after Pierre Fermat, a 
seventeenth-century French mathematician who scribbled it in the 
margin of a notebook. 

R : For all numbers a, b, c, n ∈  with n > 2, it is the case that 
. 

Fermat believed this statement was true. He noted that he could 
prove it was true, except his notebook’s margin was too narrow to 
contain his proof. It is doubtful that he really had a correct proof 
in mind, for after his death generations of brilliant mathematicians 
tried unsuccessfully to prove that his statement was true (or false). 
Finally, in 1993, Andrew Wiles of Princeton University announced 
that he had devised a proof. Wiles had worked on the problem for 
over seven years, and his proof runs through hundreds of pages. The 
moral of this story is that some true statements are not obviously 
true. 

Here is another statement famous enough to be named. It was 
first posed in the eighteenth century by the German mathematician 
Christian Goldbach, and thus is called the Goldbach conjecture: 

S : Every even integer greater than 2 is a sum of two prime 
numbers. 

You must agree that S is either true or false. It appears to be true, 
because when you examine even numbers that are bigger than 2, 
they seem to be sums of two primes: 4 = 2+2, 6 = 3+3, 8 = 3+5, 10 = 
5+5, 12 = 5+7, 100 = 17+83 and so on. But that’s not to say there isn’t 
some large even number that’s not the sum of two primes. If such 
a number exists, then S is false. The thing is, in the over 260 years 
since Goldbach first posed this problem, no one has been able to 
determine whether it’s true or false. But since it is clearly either true 
or false, S is a statement. 
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This book is about the methods that can be used to prove that S 
(or any other statement) is true or false. To prove that a statement 
is true, we start with obvious statements (or other statements that 
have been proven true) and use logic to deduce more and more 
complex statements until finally we obtain a statement such as S. 
Of course some statements are more difficult to prove than others, 
and S appears to be notoriously difficult; we will concentrate on 
statements that are easier to prove. 

But the point is this: In proving that statements are true, we 
use logic to help us understand statements and to combine pieces 
of information to produce new pieces of information. In the next 
several sections we explore some standard ways that statements 
can be combined to form new statements, or broken down into 
simpler statements. 

And, Or, Not 

The word “and” can be used to combine two statements to form a 
new statement. Consider for example the following sentence. 

R1 : The number 2 is even and the number 3 is odd. 
We recognize this as a true statement, based on our common-

sense understanding of the meaning of the word “and.” Notice 
that R1 is made up of two simpler statements: 

P : The number 2 is even. 
Q : The number 3 is odd. 

These are joined together by the word “and” to form the more 
complex statement R1. The statement R1 asserts that P and Q are 
both true. Since both P and Q are in fact true, the statement R1 is 
also true. 

Had one or both of P and Q been false, then R1 would be false. 
For instance, each of the following statements is false. 

R2 : The number 1 is even and the number 3 is odd. 
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R3 : The number 2 is even and the number 4 is odd. 
R4 : The number 3 is even and the number 2 is odd. 

From these examples we see that any two statements P and Q 
can be combined to form a new statement “P and Q.” In the spirit 
of using letters to denote statements, we now introduce the special 
symbol ∧ to stand for the word “and.” Thus if P and Q are statements, 
P ∧ Q stands for the statement “P and Q.” The statement P ∧ Q is true 

if both P and Q are true; otherwise it is false. This is summarized in 
the following table, called a truth table. 

P Q P ∧ ∧ Q 

T T T 

T F F 

F T F 

F F F 

In this table, T stands for “True,” and F stands for “False.” (T and 
F are called truth values.) Each line lists one of the four possible 
combinations or truth values for P and Q, and the column headed by 
P ∧ Q tells whether the statement P ∧ Q is true or false in each case. 

Statements can also be combined using the word “or.” Consider 
the following four statements. 

S1 : The number 2 is even or the number 3 is odd. 
S2 : The number 1 is even or the number 3 is odd. 
S3 : The number 2 is even or the number 4 is odd. 
S4 : The number 3 is even or the number 2 is odd. 

In mathematics, the assertion “P or Q” is always understood to 
mean that one or both of P and Q is true. Thus statements S1, S2, 
S3 are all true, while S4 is false. The symbol ∨ is used to stand for 
the word “or.” So if P and Q are statements, P ∨ Q represents the 

statement “P or Q.” Here is the truth table. 
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P Q P ∨ ∨ Q 

T T T 

T F T 

F T T 

F F F 

It is important to be aware that the meaning of “or” expressed 
in the above table differs from the way it is sometimes used in 
everyday conversation. For example, suppose a university official 
makes the following threat: 

You pay your tuition or you will be withdrawn from school. 
You understand that this means that either you pay your tuition 

or you will be withdrawn from school, but not both. In mathematics 
we never use the word “or” in such a sense. For us “or” means 
exactly what is stated in the table for ∨. Thus P ∨ Q being true means 

one or both of P and Q is true. If we ever need to express the fact 
that exactly one of P and Q is true, we use one of the following 
constructions: 

P or Q, but not both. 
Either P or Q. 

If the university official were a mathematician, he might have 
qualified his statement in one of the following ways. 

Pay your tuition or you will be withdrawn from school, but 
not both. 
Either you pay your tuition or you will be withdrawn from 
school. 

To conclude this section, we mention another way of obtaining 
new statements from old ones. Given any statement P, we can form 
the new statement “It is not true that P.” For example, consider the 
following statement. 

The number 2 is even. 
This statement is true. Now change it by inserting the words “It is 

not true that” at the beginning: 
It is not true that the number 2 is even. 
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This new statement is false. 
For another example, starting with the false statement “

” we get the true statement “It is not true that 
.” 

We use the symbol ∼ to stand for the words “It’s not true that,” 
so ∼ P means “It’s not true that P.” We often read ∼ P simply as “not 

P.” Unlike ∧ and ∨, which combine two statements, the symbol ∼ just 
alters a single statement. Thus its truth table has just two lines, one 
for each possible truth value of P. 

P ∼ ∼ P 

T F 

F T 

The statement ∼ P is called the negation of P. The negation of 
a specific statement can be expressed in numerous ways. Consider 

P : The number 2 is even. 
Here are several ways of expressing its negation. 

∼ P : It’s not true that the number 2 is even. 

∼ P : It is false that the number 2 is even. 

∼ P : The number 2 is not even. 
In this section we’ve learned how to combine or modify 

statements with the operations ∧, ∨ and ∼. Of course we can also 
apply these operations to open sentences or a mixture of open 
sentences and statements. For example, (x is an even integer)∧(3 is 
an odd integer) is an open sentence that is a combination of an open 
sentence and a statement. 

Conditional Statements 

There is yet another way to combine two statements. Suppose we 
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have in mind a specific integer a. Consider the following statement 
about a. 

R : If the integer a is a multiple of 6, then a is divisible by 2. 
We immediately spot this as a true statement based on our 

knowledge of integers and the meanings of the words “if” and “then.” 
If integer a is a multiple of 6, then a is even, so therefore a is divisible 
by 2. Notice that R is built up from two simpler statements: 

P : The integer a is a multiple of 6. 
Q : The integer a is divisible by 2. 
R : If P, then Q. 

In general, given any two statements P and Q whatsoever, we can 
form the new statement “If P, then Q.” This is written symbolically 
as P ⇒ Q which we read as “If P, then Q,” or “P implies Q.” Like ∧ 
and ∨, the symbol ⇒ has a very specific meaning. When we assert 
that the statement P ⇒ Q is true, we mean that if P is true then Q 

must also be true. (In other words we mean that the condition P 
being true forces Q to be true.) A statement of form P ⇒ Q is called 

a conditional statement because it means Q will be true under the 
condition that P is true. 

You can think of P ⇒ Q as being a promise that whenever P is true, 

Q will be true also. There is only one way this promise can be broken 
(i.e. be false) and that is if P is true but Q is false. Thus the truth table 
for the promise P ⇒ Q is as follows: 

P Q P ⇒ ⇒ Q 

T T T 

T F F 

F T T 

F F T 

Perhaps you are bothered by the fact that P ⇒ Q is true in the 
last two lines of this table. Here’s an example to convince you that 
the table is correct. Suppose your professor makes the following 
promise: 
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If you pass the final exam, then you will pass the course. 
Your professor is making the promise 

(You pass the exam) ⇒ (You pass the course). 
Under what circumstances did she lie? There are four possible 

scenarios, depending on whether or not you passed the exam and 
whether or not you passed the course. These scenarios are tallied in 
the following table. 

You pass exam You pass course (You pass exam) ⇒ (You pass course) ⇒

T T T 

T F F 

F T T 

F F T 

The first line describes the scenario where you pass the exam and 
you pass the course. Clearly the professor kept her promise, so we 
put a T in the third column to indicate that she told the truth. In 
the second line, you passed the exam, but your professor gave you a 
failing grade in the course. In this case she broke her promise, and 
the F in the third column indicates that what she said was untrue. 

Now consider the third row. In this scenario you failed the exam 
but still passed the course. How could that happen? Maybe your 
professor felt sorry for you. But that doesn’t make her a liar. Her 
only promise was that if you passed the exam then you would pass 
the course. She did not say passing the exam was the only way to 
pass the course. Since she didn’t lie, then she told the truth, so there 
is a T in the third column. 

Finally look at the fourth row. In that scenario you failed the 
exam and you failed the course. Your professor did not lie; she did 
exactly what she said she would do. Hence the T in the third column. 

In mathematics, whenever we encounter the construction “If P, 
then Q” it means exactly what the truth table for ⇒ expresses. But 
of course there are other grammatical constructions that also mean 
P ⇒ Q. Here is a summary of the main ones. 
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These can all be used in the place of (and mean exactly the same 
thing as) “If P, then Q.” You should analyze the meaning of each one 
and convince yourself that it captures the meaning of P ⇒ Q. For 

example, P ⇒ Q means the condition of P being true is enough (i.e., 

sufficient) to make Q true; hence “P is a sufficient condition for Q.” 
The wording can be tricky. Often an everyday situation involving 

a conditional statement can help clarify it. For example, consider 
your professor’s promise: 

(You pass the exam) ⇒ (You pass the course) 
This means that your passing the exam is a sufficient (though 

perhaps not necessary) condition for your passing the course. Thus 
your professor might just as well have phrased her promise in one 
of the following ways. 

Passing the exam is a sufficient condition for passing the 
course. 
For you to pass the course, it is sufficient that you pass the 
exam. 

However, when we want to say “If P, then Q” in everyday 
conversation, we do not normally express this as “Q is a necessary 
condition for P” or “P only if Q.” But such constructions are not 
uncommon in mathematics. To understand why they make sense, 
notice that P ⇒ Q being true means that it’s impossible that P is true 

but Q is false, so in order for P to be true it is necessary that Q is 
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true; hence “Q is a necessary condition for P.” And this means that P 
can only be true if Q is true, i.e., “P only if Q.” 

Biconditional Statements 

It is important to understand that P ⇒ Q is not the same as Q 

⇒ P. To see why, suppose that a is some integer and consider the 
statements 

(a is a multiple of 6) ⇒ (a is divisible by 2), 
(a is divisible by 2) ⇒ (a is a multiple of 6). 

The first statement asserts that if a is a multiple of 6 then a is 
divisible by 2. This is clearly true, for any multiple of 6 is even and 
therefore divisible by 2. The second statement asserts that if a is 
divisible by 2 then it is a multiple of 6. This is not necessarily true, 
for a = 4 (for instance) is divisible by 2, yet not a multiple of 6. 
Therefore the meanings of P ⇒ Q and Q ⇒ P are in general quite 

different. The conditional statement Q ⇒ P is called the converse of 

P ⇒ Q, so a conditional statement and its converse express entirely 
different things. 

However, the contrapositive of P ⇒ Q, ~Q ⇒ ~P, is 

equivalent to P ⇒ Q. Similarly, the inverse of P ⇒ Q, 

which is ~P ⇒ ~Q, is equivalent to the converse Q ⇒ P. 
In “Truth Tables for Statements,” we will learn how to 
show these equivalences using a truth table. 

But sometimes, if P and Q are just the right statements, it can 
happen that P ⇒ Q and Q ⇒ P are both necessarily true. For 
example, consider the statements 
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(a is even) ⇒ (a is divisible by 2), 
(a is divisible by 2) ⇒ (a is even). 

No matter what value a has, both of these statements are true. 
Since both P ⇒ Q and Q ⇒ P are true, it follows that (P ⇒ Q)∧(Q ⇒ 

P) is true. 
We now introduce a new symbol ⇔ to express the meaning of 

the statement (P ⇒ Q)∧(Q ⇒ P). The expression P ⇔ Q is understood 

to have exactly the same meaning as (P ⇒ Q)∧(Q ⇒ P). According to 

the previous section, Q ⇒ P is read as “P if Q,” and P ⇒ Q can be read 

as “P only if Q.” Therefore we pronounce P ⇔ Q as “P if and only if 

Q.” For example, given an integer a, we have the true statement 
(a is even) ⇔ (a is divisible by 2), 

which we can read as “Integer a is even if and only if a is divisible 
by 2.” 

The truth table for ⇔ is shown below. Notice that in the first and 
last rows, both P ⇒ Q and Q ⇒ P are true (according to the truth 
table for ⇒), so (P ⇒ Q) ∧ (Q ⇒ P) is true, and hence P ⇔ Q is true. 
However, in the middle two rows one of P ⇒ Q or Q ⇒ P is false, so 
(P ⇒ Q)∧(Q ⇒ P) is false, making P ⇔ Q false. 

P Q P ⇔ Q ⇔

T T T 

T F F 

F T F 

F F T 

Compare the statement R : (a is even) ⇔ (a is divisible by 2) with 
this truth table. If a is even then the two statements on either side 
of ⇔ are true, so according to the table R is true. If a is odd then the 
two statements on either side of ⇔ are false, and again according 
to the table R is true. Thus R is true no matter what value a has. In 
general, P ⇔ Q being true means P and Q are both true or both false. 
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Not surprisingly, there are many ways of saying P ⇔ Q in English. 

The following constructions all mean P ⇔ Q: 

The first three of these just combine constructions from the 
previous section to express that P ⇒ Q and Q ⇒ P. In the last one, 

the words “and conversely” mean that in addition to “If P, then Q” 
being true, the converse statement “If Q, then P” is also true. 

Truth Tables for Statements 

You should now know the truth tables for ∧, ∨, ∼, ⇒ and ⇔. They 
should be internalized as well as memorized. You must understand 
the symbols thoroughly, for we now combine them to form more 
complex statements. 

For example, suppose we want to convey that one or the other 
of P and Q is true but they are not both true. No single symbol 
expresses this, but we could combine them as 

(P ∨ Q)∧ ∼ (P ∧ Q), 
which literally means: 

P or Q is true, and it is not the case that both P and Q are true. 
This statement will be true or false depending on the truth values 

of P and Q. In fact we can make a truth table for the entire 
statement. Begin as usual by listing the possible true/false 
combinations of P and Q on four lines. The statement (P ∨ Q)∧ ∼ (P ∧ 

Q) contains the individual statements (P ∨ Q) and (P ∧ Q), so we next 
tally their truth values in the third and fourth columns. The fifth 
column lists values for ∼ (P ∧ Q), and these are just the opposites of 
the corresponding entries in the fourth column. Finally, combining 
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the third and fifth columns with ∧, we get the values for (P ∨ Q)∧ ∼(P 

∧ Q) in the sixth column. 

P Q (P ∨ ∨ Q) (P ∧ ∧ Q) ∼(∼ P ∧ ∧ Q) (P ∨ ∨ Q)∧ ∼(∧ ∼ P ∧ ∧ Q) 

T T T T F F 

T F T F T T 

F T T F T T 

F F F F T F 

This truth table tells us that (P ∨ Q)∧ ∼(P ∧ Q) is true precisely 
when one but not both of P and Q are true, so it has the meaning we 
intended. (Notice that the middle three columns of our truth table 
are just “helper columns” and are not necessary parts of the table. 
In writing truth tables, you may choose to omit such columns if you 
are confident about your work.) 

For another example, consider the following familiar statement 
concerning two real numbers x and y: 

The product xy equals zero if and only if x = 0 or y = 0. 
This can be modeled as (xy = 0) ⇔ (x = 0 ∨ y = 0). If we introduce 

letters P, Q, and R for the statements xy = 0, x = 0 and y = 0, it 
becomes P ⇔ (Q ∨ R). Notice that the parentheses are necessary 
here, for without them we wouldn’t know whether to read the 
statement as P ⇔ (Q ∨ R) or (P ⇔ Q) ∨ R. 

Making a truth table for P ⇔ (Q ∨ R) entails a line for each T/F 

combination for the three statements P, Q, and R. The eight possible 
combinations are tallied in the first three columns of the following 
table. 
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P Q R Q ∨ ∨ R P ⇔ (⇔ Q ∨ ∨ R) 

T T T T T 

T T F T T 

T F T T T 

T F F F F 

F T T T F 

F T F T F 

F F T T F 

F F F F T 

We fill in the fourth column using our knowledge of the truth 
table for ∨. Finally the fifth column is filled in by combining the first 
and fourth columns with our understanding of the truth table for ⇔. 
The resulting table gives the true/false values of P ⇔ (Q ∨ R) for all 

values of P, Q, and R. 
Notice that when we plug in various values for x and y, the 

statements P : xy = 0, Q : x = 0 and R : y = 0 have various truth values, 
but the statement P ⇔ (Q ∨ R) is always true. For example, if x = 2 

and y = 3, then P, Q, and R are all false. This scenario is described in 
the last row of the table, and there we see that P ⇔ (Q ∨ R) is true. 

Likewise if x = 0 and y = 7, then P and Q are true and R is false, a 
scenario described in the second line of the table, where again P ⇔ 

(Q ∨ R) is true. There is a simple reason why P ⇔ (Q ∨ R) is true for 

any values of x and y: It is that P ⇔ (Q ∨ R) represents (xy = 0) ⇔ (x 

= 0 ∨ y = 0), which is a true mathematical statement. It is absolutely 
impossible for it to be false. 

This may make you wonder about the lines in the table where P ⇔ 

(Q ∨ R) is false. Why are they there? The reason is that P ⇔ (Q ∨ R) 
can also represent a false statement. To see how, imagine that at the 
end of the semester your professor makes the following promise. 

You pass the class if and only if you get an “A” on the final or 
you get a “B” on the final. 

This promise has the form P ⇔ (Q ∨ R), so its truth values are 
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tabulated in the above table. Imagine it turned out that you got an 
“A” on the exam but failed the course. Then surely your professor 
lied to you. In fact, P is false, Q is true and R is false. This scenario 
is reflected in the sixth line of the table, and indeed P ⇔ (Q ∨ R) is 
false (i.e., it is a lie). 

The moral of this example is that people can lie, but true 
mathematical statements never lie. 

We close this section with a word about the use of parentheses. 
The symbol ∼ is analogous to the minus sign in algebra. It negates 
the expression it precedes. Thus ∼P ∨ Q means (∼P) ∨ Q, not ∼(P ∨ 

Q). In ∼(P ∨ Q), the value of the entire expression P ∨ Q is negated. 

Logical Equivalence 

In contemplating the truth table for P ⇔ Q, you probably noticed 

that P ⇔ Q is true exactly when P and Q are both true or both false. 

In other words, P ⇔ Q is true precisely when at least one of the 

statements P ∧ Q or ∼P ∧ ∼Q is true. This may tempt us to say that P 

⇔ Q means the same thing as (P ∧ Q)∨(∼P ∧ ∼Q). 

To see if this is really so, we can write truth tables for P ⇔ Q 

and (P ∧ Q) ∨ (∼P ∧ ∼Q). In doing this, it is more efficient to put 
these two statements into the same table, as follows. (This table has 
helper columns for the intermediate expressions ∼P, ∼Q, (P ∧ Q), and 

(~P ∧ ∼Q).) 

P Q ∼∼P ∼∼Q (P ∧ ∧ Q) (∼∼P ∧ ∼∧ ∼Q) (P ∧ ∧ Q)∨(∼∨ ∼P ∧ ∼∧ ∼Q) P ⇔ ⇔ Q 

T T F F T F T T 

T F F T F F F F 

F T T F F F F F 

F F T T F T T T 
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The table shows that P ⇔ Q and (P ∧ Q)∨(∼P ∧ ∼Q) have the same 

truth value, no matter the values P and Q. It is as if P ⇔ Q and 

(P∧Q)∨(∼P ∧ ∼Q) are algebraic expressions that are equal no matter 

what is “plugged into” variables P and Q. We express this state of 
affairs by writing 

P ⇔ Q = (P ∧ Q)∨(∼P ∧ ∼Q) 

and saying that P ⇔ Q and (P ∧ Q)∨(∼P ∧ ∼Q) are logically 
equivalent. 

In general, two statements are logically equivalent if their 
truth values match up line-for-line in a truth table. 

Logical equivalence is important because it can give us different 
(and potentially useful) ways of looking at the same thing. As an 
example, the following table shows that P ⇒ Q is logically equivalent 

to (∼Q) ⇒ (∼P). 

P Q ∼∼P ∼∼Q (∼∼Q) ⇒ (∼⇒ ∼P) P ⇒ ⇒ Q 

T T F F T T 

T F F T F F 

F T T F T T 

F F T T T T 

The fact that P ⇒ Q = (∼Q) ⇒ (∼P) is useful because so many 

theorems have the form P ⇒ Q. As we will see in Chapter 5, proving 
such a theorem may be easier if we express it in the logically 
equivalent form (∼Q) ⇒ (∼P). 

There are two pairs of logically equivalent statements that come 
up again and again throughout this book and beyond. They are 
prevalent enough to be dignified by a special name: DeMorgan’s 
laws. 
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Fact: DeMorgan’s Laws 

1. ∼(P ∧ Q) = (∼P)∨(∼Q) 

2. ∼(P ∨ Q) = (∼P)∧(∼Q) 

The first of DeMorgan’s laws is verified by the following table. You 
are asked to verify the second in one of the exercises. 

P Q ~P ~Q P ∧ ∧ Q  ∼(∼ P ∧ ∧ Q) (∼∼P)∨(∼∨ ∼Q) 

T T F F T F F 

T F F T F T T 

F T T F F T T 

F F T T F T T 

DeMorgan’s laws are actually very natural and intuitive. Consider 
the statement ∼(P ∧ Q), which we can interpret as meaning that it is 

not the case that both P and Q are true. If it is not the case that both 
P and Q are true, then at least one of P or Q is false, in which case 
(∼P)∨(∼Q) is true. Thus ∼(P ∧ Q) means the same thing as (∼P)∨(∼Q). 

DeMorgan’s laws can be very useful. Suppose we happen to know 
that some statement having form ∼(P ∨ Q) is true. The second of 

DeMorgan’s laws tells us that (∼Q)∧(∼P) is also true, hence ∼P and ∼Q 
are both true as well. Being able to quickly obtain such additional 
pieces of information can be extremely useful. 

Here is a summary of some significant logical equivalences. Those 
that are not immediately obvious can be verified with a truth table. 

Logic  |  53



Notice how the distributive law P ∧ (Q ∨ R) = (P ∧ Q) ∨ (P ∧ R) has 

the same structure as the distributive law p(q + r) = p · q + p · r from 
algebra. Concerning the associative laws, the fact that P ∧ (Q ∧ R) = 

(P ∧ Q) ∧ R means that the position of the parentheses is irrelevant, 

and we can write this as P ∧ Q ∧ R without ambiguity. Similarly, we 

may drop the parentheses in an expression such as P ∨ (Q ∨ R). 
But parentheses are essential when there is a mix of ∧ and ∨, as 

in P ∨(Q ∧ R). Indeed, P ∨(Q ∧ R) and (P ∨ Q) ∧ R are not logically 
equivalent. 

Negating Statements 

Given a statement R, the statement ∼R is called the negation of R. If 
R is a complex statement, then it is often the case that its negation 
∼R can be written in a simpler or more useful form. The process of 

finding this form is called negating R. In proving theorems it is often 
necessary to negate certain statements. We now investigate how to 
do this. 

We have already examined part of this topic. DeMorgan’s laws 
∼ (P ∧Q) = (∼ P)∨(∼ Q) 

∼ (P ∨Q) = (∼ P)∧(∼ Q) 
(from “Logical Equivalence”) can be viewed as rules that tell us 
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how to negate the statements P ∧Q and P ∨Q. Here are some 
examples that illustrate how DeMorgan’s laws are used to negate 
statements involving “and” or “or.” 

Example 5 

Consider negating the following statement. 

R : You can solve it by factoring or with the 
quadratic formula. 

Now, R means (You can solve it by factoring) ∨ (You can 
solve it with Q.F.), which we will denote as P ∨ Q. The 
negation of this is 

∼(P ∨ Q) = (∼P)∧(∼Q). 

Therefore, in words, the negation of R is 

∼R : You can’t solve it by factoring and you can’t 
solve it with the quadratic formula. 

Maybe you can find ∼R without invoking DeMorgan’s 
laws. That is good; you have internalized DeMorgan’s laws 
and are using them unconsciously. 

Example 6 

We will negate the following sentence. 

R : The numbers x and y are both odd. 
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This statement means (x is odd) ∧ (y is odd), so its 
negation is 

~[(x is odd) ∧ (y is odd)] = ∼(x is odd) ∨ ∼(y is odd) 
(x is odd) ∧ (y is odd) = (x is even) ∨ (y is even). 

Therefore the negation of R can be expressed in the 
following ways: 

∼ R : The number x is even or the number y is even. 
∼ R : At least one of x and y is even. 

Now let’s move on to a slightly different kind of problem. It’s often 
necessary to find the negations of quantified statements. For 
example, consider ∼(∀x ∈ , P(x)). Reading this in words, we have 
the following: 

It is not the case that P(x) is true for all natural numbers x. 
This means P(x) is false for at least one x. In symbols, this is ∃ x ∈ 

, ∼P(x). Thus ∼ (∀x ∈ , P(x)) = ∃ x ∈ , ∼P(x). Similarly, you can 

reason out that ∼ (∃ x ∈ , P(x)) = ∀x ∈ , ∼P(x). In general: 

∼ (∀x ∈ S, P(x)) = ∃ x ∈ S, ∼P(x) 

∼ (∃ x ∈ S, P(x)) = ∀x ∈ S, ∼P(x) 

Logical Inference 

Suppose we know that a statement of form P ⇒ Q is true. This 

tells us that whenever P is true, Q will also be true. By itself, P ⇒ 

Q being true does not tell us that either P or Q is true (they could 
both be false, or P could be false and Q true). However if in addition 
we happen to know that P is true then it must be that Q is true. 
This is called a logical inference: Given two true statements we can 
infer that a third statement is true. In this instance true statements 
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P ⇒ Q and P are “added together” to get Q. This is described below 

with P ⇒ Q and P stacked one atop the other with a line separating 

them from Q. The intended meaning is that P ⇒ Q combined with P 

produces Q. 

Two other logical inferences are listed above. In each case you 
should convince yourself (based on your knowledge of the relevant 
truth tables) that the truth of the statements above the line forces 
the statement below the line to be true. 

Following are some additional useful logical inferences. The 
first expresses the obvious fact that if P and Q are both true then 
the statement P ∧ Q will be true. On the other hand, P ∧ Q being true 

forces P (also Q) to be true. Finally, if P is true, then P ∨ Q must be 

true, no matter what statement Q is. 

These inferences are so intuitively obvious that they scarcely 
need to be mentioned. However, they represent certain patterns of 
reasoning that we will frequently apply to sentences in proofs, so we 
should be cognizant of the fact that we are using them. 

The first two statements in each case are called 
“premises” and the final statement is the “conclusion.” 
We combine premises with ∧ (“and”). The premises 
together imply the conclusion. Thus, the first argument 
would have (( P ⇒ Q) ∧ P) ⇒ Q as its symbolic statement. 
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An Important Note 

It is important to be aware of the reasons that we study logic. 
There are three very significant reasons. First, the truth tables we 
studied tell us the exact meanings of the words such as “and,” “or,” 
“not,” and so on. For instance, whenever we use or read the “If…, 
then” construction in a mathematical context, logic tells us exactly 
what is meant. Second, the rules of inference provide a system in 
which we can produce new information (statements) from known 
information. Finally, logical rules such as DeMorgan’s laws help us 
correctly change certain statements into (potentially more useful) 
statements with the same meaning. Thus logic helps us understand 
the meanings of statements and it also produces new meaningful 
statements. 

Logic is the glue that holds strings of statements together and 
pins down the exact meaning of certain key phrases such as the 
“If…, then” or “For all” constructions. Logic is the common language 
that all mathematicians use, so we must have a firm grip on it in 
order to write and understand mathematics. 

But despite its fundamental role, logic’s place is in the background 
of what we do, not the forefront. From here on, the beautiful 
symbols ∧, ∨, ⇒, ⇔, ∼, ∀ and ∃ are rarely written. But we are aware 
of their meanings constantly. When reading or writing a sentence 
involving mathematics we parse it with these symbols, either 
mentally or on scratch paper, so as to understand the true and 
unambiguous meaning. 
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3. Truth Tables and Analyzing 
Arguments: Examples 

Truth Tables 

Because complex Boolean statements can get tricky to think about, 
we can create a truth table to keep track of what truth values for 
the simple statements make the complex statement true and false 

Truth Table 

A table showing what the resulting truth value of a 
complex statement is for all the possible truth values for 
the simple statements. 

Example 1 

Suppose you’re picking out a new couch, and your 
significant other says “get a sectional or something with a 
chaise.” 

This is a complex statement made of two simpler 
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conditions: “is a sectional,” and “has a chaise.” For simplicity, 
let’s use S to designate “is a sectional,” and C to designate 
“has a chaise.” The condition S is true if the couch is a 
sectional. 

A truth table for this would look like this: 

S C S or C 

T T T 

T F T 

F T T 

F F F 

In the table, T is used for true, and F for false. In the first 
row, if S is true and C is also true, then the complex 
statement “S or C” is true. This would be a sectional that 
also has a chaise, which meets our desire. 

Remember also that or in logic is not exclusive; if the 
couch has both features, it does meet the condition. 

To shorthand our notation further, we’re going to introduce some 
symbols that are commonly used for and, or, and not. 

Symbols 

The symbol ⋀ is used for and: A and B is notated A ⋀ B. 
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The symbol ⋁ is used for or: A or B is notated A ⋁ B 

The symbol ~ is used for not: not A is notated ~A 

You can remember the first two symbols by relating them to the 
shapes for the union and intersection. A ⋀ B would be the elements 
that exist in both sets, in A ⋂ B. Likewise, A ⋁ B would be the 
elements that exist in either set, in A ⋃ B. 

In the previous example, the truth table was really just 
summarizing what we already know about how the or statement 
work. The truth tables for the basic and, or, and not statements are 
shown below. 

Basic Truth Tables 

A B A ⋀ ⋀ B 

T T T 

T F F 

F T F 

F F F 
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A B A ⋁ ⋁ B 

T T T 

T F T 

F T T 

F F F 

 

A ~A 

T F 

F T 

Truth tables really become useful when analyzing more complex 
Boolean statements. 

Example 2 

Create a truth table for the statement A ⋀ ~(B ⋁ C) 

It helps to work from the inside out when creating truth 
tables, and create tables for intermediate operations. We 
start by listing all the possible truth value combinations for 
A, B, and C.   Notice how the first column contains 4 Ts 
followed by 4 Fs, the second column contains 2 Ts, 2 Fs, 
then repeats, and the last column alternates. This pattern 
ensures that all combinations are considered. Along with 
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those initial values, we’ll list the truth values for the 
innermost expression, B ⋁ C. 

A B C B ⋁ C 

T T T T 

T T F T 

T F T T 

T F F F 

F T T T 

F T F T 

F F T T 

F F F F 

Next we can find the negation of B ⋁ C, working off the B 
⋁ C column we just created. 

A B C B ⋁ C ~(B ⋁ C) 

T T T T F 

T T F T F 

T F T T F 

T F F F T 

F T T T F 

F T F T F 

F F T T F 

F F F F T 

Finally, we find the values of A and ~(B ⋁ C) 
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A B C B ⋁ C ~(B ⋁ C) A ⋀ ~(B ⋁ C) 

T T T T F  F 

T T F T F F 

T F T T F F 

T F F F T T 

F T T T F F 

F T F T F F 

F F T T F F 

F F F F T F 

It turns out that this complex expression is only true in 
one case: if A is true, B is false, and C is false. 

When we discussed conditions earlier, we discussed the type where 
we take an action based on the value of the condition. We are 
now going to talk about a more general version of a conditional, 
sometimes called an implication. 

Implications 

Implications are logical conditional sentences stating 
that a statement p, called the antecedent, implies a 
consequence q. 

Implications are commonly written as p → q 
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Implications are similar to the conditional statements we looked at 
earlier; p → q is typically written as “if p then q,” or “p therefore 
q.” The difference between implications and conditionals is that 
conditionals we discussed earlier suggest an action—if the condition 
is true, then we take some action as a result. Implications are a 
logical statement that suggest that the consequence must logically 
follow if the antecedent is true. 

Example 3 

The English statement “If it is raining, then there are 
clouds is the sky” is a logical implication. It is a valid 
argument because if the antecedent “it is raining” is true, 
then the consequence “there are clouds in the sky” must 
also be true. 

Notice that the statement tells us nothing of what to expect if it is 
not raining. If the antecedent is false, then the implication becomes 
irrelevant. 

Example 4 

A friend tells you that “if you upload that picture to 
Facebook, you’ll lose your job.” There are four possible 
outcomes: 

1. You upload the picture and keep your job 
2. You upload the picture and lose your job 
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3. You don’t upload the picture and keep your job 
4. You don’t upload the picture and lose your job 

There is only one possible case where your friend was 
lying—the first option where you upload the picture and 
keep your job. In the last two cases, your friend didn’t say 
anything about what would happen if you didn’t upload the 
picture, so you can’t conclude their statement is invalid, 
even if you didn’t upload the picture and still lost your job. 

In traditional logic, an implication is considered valid (true) as long 
as there are no cases in which the antecedent is true and the 
consequence is false. It is important to keep in mind that symbolic 
logic cannot capture all the intricacies of the English language. 

Truth Values for Implications 

p q p → q 

T T T 

T F F 

F T T 

F F T 
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Example 5 

Construct a truth table for the statement (m ⋀ ~p) → r 

We start by constructing a truth table for the antecedent. 

m p ~p m ⋀ ~p 

T T F F 

T F T T 

F T F F 

F F T F 

Now we can build the truth table for the implication 

m p ~p m ⋀ ~p r (m ⋀ ~p) → r 

T T F F T T 

T F T T T T 

F T F F T T 

F F T F T T 

T T F F F T 

T F T T F F 

F T F F F T 

F F T F F T 

In this case, when m is true, p is false, and r is false, then 
the antecedent m ⋀ ~p will be true but the consequence 
false, resulting in a invalid implication; every other case 
gives a valid implication. 
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For any implication, there are three related statements, the 
converse, the inverse, and the contrapositive. 

Related Statements 

The original implication is “if p then q”: p → q 

The converse is “if q then p”: q → p 

The inverse is “if not p then not q”: ~p → ~q 

The contrapositive is “if not q then not p”: ~q → ~p 

Example 6 

Consider again the valid implication “If it is raining, then 
there are clouds in the sky.” 

The converse would be “If there are clouds in the sky, it is 
raining.” This is certainly not always true. 

The inverse would be “If it is not raining, then there are 
not clouds in the sky.” Likewise, this is not always true. 

The contrapositive would be “If there are not clouds in 
the sky, then it is not raining.” This statement is valid, and is 
equivalent to the original implication. 

Looking at truth tables, we can see that the original conditional and 
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the contrapositive are logically equivalent, and that the converse 
and inverse are logically equivalent. 

Implication Converse Inverse Contrapositive 

p q p → q q → p ~p → ~q ~q → ~p 

T T T T T T 

T F F T T F 

F T T F F T 

F F T T T T 

Equivalence 

A conditional statement and its contrapositive are 
logically equivalent. 

The converse and inverse of a statement are logically 
equivalent. 

Arguments 

A logical argument is a claim that a set of premises support a 
conclusion. There are two general types of arguments: inductive 
and deductive arguments. 
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Argument types 

An inductive argument uses a collection of specific 
examples as its premises and uses them to propose a 
general conclusion. 

A deductive argument uses a collection of general 
statements as its premises and uses them to propose a 
specific situation as the conclusion. 

Example 7 

The argument “when I went to the store last week I 
forgot my purse, and when I went today I forgot my purse. I 
always forget my purse when I go the store” is an inductive 
argument. 

The premises are: 

I forgot my purse last week 
I forgot my purse today 

The conclusion is: 

I always forget my purse 

Notice that the premises are specific situations, while the 
conclusion is a general statement. In this case, this is a 
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fairly weak argument, since it is based on only two 
instances. 

Example 8 

The argument “every day for the past year, a plane flies 
over my house at 2pm. A plane will fly over my house every 
day at 2pm” is a stronger inductive argument, since it is 
based on a larger set of evidence. 

Evaluating inductive arguments 

An inductive argument is never able to prove the 
conclusion true, but it can provide either weak or strong 
evidence to suggest it may be true. 

Many scientific theories, such as the big bang theory, can never 
be proven. Instead, they are inductive arguments supported by a 
wide variety of evidence. Usually in science, an idea is considered a 
hypothesis until it has been well tested, at which point it graduates 
to being considered a theory. The commonly known scientific 
theories, like Newton’s theory of gravity, have all stood up to years 
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of testing and evidence, though sometimes they need to be adjusted 
based on new evidence. For gravity, this happened when Einstein 
proposed the theory of general relativity. 

A deductive argument is more clearly valid or not, which makes 
them easier to evaluate. 

Evaluating deductive arguments 

A deductive argument is considered valid if all the 
premises are true, and the conclusion follows logically 
from those premises. In other words, the premises are 
true, and the conclusion follows necessarily from those 
premises. 

Example 9 

The argument “All cats are mammals and a tiger is a cat, 
so a tiger is a mammal” is a valid deductive argument. 

The premises are: 

All cats are mammals 
A tiger is a cat 

The conclusion is: 

A tiger is a mammal 
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Both the premises 
are true. To see that the premises must logically lead to the 
conclusion, one approach would be use a Venn diagram. 
From the first premise, we can conclude that the set of cats 
is a subset of the set of mammals. From the second 
premise, we are told that a tiger lies within the set of cats. 
From that, we can see in the Venn diagram that the tiger 
also lies inside the set of mammals, so the conclusion is 
valid. 
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Analyzing Arguments with Venn 
Diagrams1 

To analyze an argument with a Venn diagram 

1. Draw a Venn diagram based on the premises of 
the argument 

2. If the premises are insufficient to determine 
what determine the location of an element, 
indicate that. 

3. The argument is valid if it is clear that the 
conclusion must be true 

Example 10 

Premise:          All firefighters know CPR 
Premise:          Jill knows CPR 
Conclusion:     Jill is a firefighter 

1. Technically, these are Euler circles or Euler diagrams, 
not Venn diagrams, but for the sake of simplicity we’ll 
continue to call them Venn diagrams. 
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From the first 
premise, we know that firefighters all lie inside the set of 
those who know CPR. From the second premise, we know 
that Jill is a member of that larger set, but we do not have 
enough information to know if she also is a member of the 
smaller subset that is firefighters. 

Since the conclusion does not necessarily follow from the 
premises, this is an invalid argument, regardless of whether 
Jill actually is a firefighter. 

It is important to note that whether or not Jill is actually a firefighter 
is not important in evaluating the validity of the argument; we are 
only concerned with whether the premises are enough to prove the 
conclusion. 

In addition to these categorical style premises of the form “all 
___,” “some ____,” and “no ____,” it is also common to see 
premises that are implications. 
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Example 11 

Premise:          If you live in Seattle, you live in 
Washington. 
Premise:          Marcus does not live in Seattle 
Conclusion:     Marcus does not live in Washington 

From the first 
premise, we know that the set of people who live in Seattle 
is inside the set of those who live in Washington. From the 
second premise, we know that Marcus does not lie in the 
Seattle set, but we have insufficient information to know 
whether or not Marcus lives in Washington or not. This is 
an invalid argument. 
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Example 12 

Consider the argument “You are a married man, so you 
must have a wife.” 

This is an invalid argument, since there are, at least in 
parts of the world, men who are married to other men, so 
the premise not insufficient to imply the conclusion. 

Some arguments are better analyzed using truth tables. 

Example 13 

Consider the argument: 

Premise:          If you bought bread, then you went to 
the store 
Premise:          You bought bread 
Conclusion:     You went to the store 

While this example is hopefully fairly obviously a valid 
argument, we can analyze it using a truth table by 
representing each of the premises symbolically. We can 
then look at the implication that the premises together 
imply the conclusion. If the truth table is a tautology 
(always true), then the argument is valid. 

We’ll get B represent “you bought bread” and S represent 
“you went to the store”. Then the argument becomes: 

Premise:          B → S 
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Premise:          B 
Conclusion:     S 

To test the validity, we look at whether the combination 
of both premises implies the conclusion; is it true that 
[(B→S) ⋀ B] → S ? 

B S B → S (B→S) ⋀ B [(B→S) ⋀ B] → S 

T T T T T 

T F F F T 

F T T F T 

F F T F T 

Since the truth table for [(B→S) ⋀ B] → S is always true, 
this is a valid argument. 

Analyzing arguments using truth tables 

To analyze an argument with a truth table: 

1. Represent each of the premises symbolically 
2. Create a conditional statement, joining all the 

premises with and to form the antecedent, and 
using the conclusion as the consequent. 

3. Create a truth table for that statement. If it is 
always true, then the argument is valid. 
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Example 14 

Premise:         If I go to the mall, then I’ll buy new 
jeans 
Premise:          If I buy new jeans, I’ll buy a shirt to go 
with it 
Conclusion:     If I got to the mall, I’ll buy a shirt. 

Let M = I go to the mall, J = I buy jeans, and S = I buy a 
shirt. 

The premises and conclusion can be stated as: 

Premise:           M → J 
Premise:           J → S 
Conclusion:     M → S 

We can construct a truth table for [(M→J) ⋀ (J→S)] → 
(M→S) 

M J S M 
→ J 

J 
→ S 

(M→J) ⋀ 
(J→S) 

M 
→ S 

[(M→J) ⋀ (J→S)] 
→ (M→S) 

T T T T T T T T 

T T F T F F F T 

T F T F T F T T 

T F F F T F F T 

F T T T T T T T 

F T F T F F T T 

F F T T T T T T 

F F F T T T T T 

From the truth table, we can see this is a valid argument. 
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4. Truth Tables: Conjunction 
and Disjunction 

This video explores the example “It is snowing OR I am wearing my 
hat,” and “It is snowing AND I am wearing my hat.” 

A YouTube element has been excluded from this version of the 

text. You can view it online here: 

https://library.achievingthedream.org/

hostosintrocollegemath/?p=23 
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PART IV 

MODULE 3: NUMERATION 
SYSTEM 

Module 3: Numeration System  |  81





5. Binary, Octal, and 
Hexadecimal 

In modern computing and digital electronics, the most commonly 
used bases are decimal (base 10), binary (base 2), octal (base 8), and 
hexadecimal (base 16). If we are converting between two bases other 
than decimal, we typically have to convert the number to base 10 
first, and then convert that number to the second base. However, 
we can easily convert directly from binary to octal, and vice versa, 
and from binary to hexadecimal, and vice versa. 

This video gives a basic introduction to these conversions: 

A YouTube element has been excluded from this version of the 

text. You can view it online here: 

https://library.achievingthedream.org/

hostosintrocollegemath/?p=25 

Binary, Octal, and Hexadecimal  |  83

https://library.achievingthedream.org/hostosintrocollegemath/?p=25#pb-interactive-content
https://library.achievingthedream.org/hostosintrocollegemath/?p=25#pb-interactive-content


For another description, this one is more like a math lecture: 

A YouTube element has been excluded from this version of the 

text. You can view it online here: 

https://library.achievingthedream.org/

hostosintrocollegemath/?p=25 

For further clarification, recall that the numbers 0 through 7 can be 
represented by up to three digits in base two. In base eight, these 
numbers are represented by a single digit. 
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Base 2 
(binary) number 

Base 10 
(decimal) equivalent 

Base 8 
(octal) number 

000  0 0 

001 1 1 

010 2 2 

011 3 3 

100 4 4 

101 5 5 

110 6 6 

111 7 7 

Now when we get to the number 8, we need four digits in base 2 
and two digits in base 8. In fact, the numbers 8 through 63 can be 
represented by two digits in base 8. We need four, five, or six digits 
in base 2 to represent these same numbers: 

Base 2 number Base 10 equivalent Base 8 number 

1000 8 10 = 1 × 8 + 0 × 1 

1001 9 11 = 1 × 8 + 1 × 1 

1010 10 12 = 1 × 8 + 2 × 1 

… … … 

111100 60 74 = 7 × 8 + 4 × 1 

111101 61 75 = 7 × 8 + 5 × 1 

111110 62 76 = 7 × 8 + 6 × 1 

111111 63 77 = 7 × 8 + 7 × 1 

The number 64 in base 8 is represented by 1008 = 1 × 82 + 0 × 81 + 
0 × 80 = 1 × 64 + 0 × 8 + 0 × 1. In base 2, this would be 10000002. 
Do you see a pattern here? For a single digit in base 8, we need up 
to three digits in base 2. For two digits in base 8, we need 4, 5, or 6 
digits in base 2. For three digits in base 8, we need 7, 8, or 9 digits 
in base 2. For each additional digit in base 8, we need up to three 
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spaces to represent it in base 2. Here’s a way to remember this: 23 

= 8, so we need three spaces. 
A couple of examples would help here. 

1. Convert the number 61578 to base 2. We split each digit in base 
8 to three digits in base 2, using the three digit base 2 
equivalent, so 68 = 1102, 18 = 0012, etc. 

2. Convert the number 101110110010102 to base 8. Split this 
number into sets of three, starting with the right-most digit, 
then convert each set of three to its equivalent in base 8. 

For hexadecimal (base 16), we need up to four digits in binary to 
represent each single digit. Remember this by recalling that 24 = 16, 
so we need four digits. 

You may want to print out copies of these worksheets to help you 
with your conversions between binary and octal or hexadecimal: 

• Converting from Binary to Octal 
• Converting from Binary to Hexadecimal 

If you would like to quiz yourself on converting the numbers 0 
through 255 to binary, octal, and hexadecimal (and between those 
bases), here’s a link to the representations of those numbers: Binary, 
Octal, and Hexadecimal Numbers. 
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6. Numeration 

Historical Counting Systems Introduction and 
Basic Number and Counting Systems 

Introduction 

As we begin our journey through the history of mathematics, one 
question to be asked is “Where do we start?” Depending on how you 
view mathematics or numbers, you could choose any of a number 
of launching points from which to begin. Howard Eves suggests the 
following list of possibilities.1 

Where to start the study of the history of mathematics… 

• At the first logical geometric “proofs” traditionally credited to 
Thales of Miletus (600 BCE). 

• With the formulation of methods of measurement made by the 
Egyptians and Mesopotamians/Babylonians. 

• Where prehistoric peoples made efforts to organize the 
concepts of size, shape, and number. 

• In pre-human times in the very simple number sense and 
pattern recognition that can be displayed by certain animals, 
birds, etc. 

• Even before that in the amazing relationships of numbers and 
shapes found in plants. 

• With the spiral nebulae, the natural course of planets, and 

1. Eves, Howard; An Introduction to the History of 
Mathematics, p. 9. 
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other universe phenomena. 

We can choose no starting point at all and instead agree that 
mathematics has always existed and has simply been waiting in 
the wings for humans to discover. Each of these positions can be 
defended to some degree and which one you adopt (if any) largely 
depends on your philosophical ideas about mathematics and 
numbers. 

Nevertheless, we need a starting point. Without passing judgment 
on the validity of any of these particular possibilities, we will choose 
as our starting point the emergence of the idea of number and the 
process of counting as our launching pad. This is done primarily as 
a practical matter given the nature of this course. In the following 
chapter, we will try to focus on two main ideas. The first will be an 
examination of basic number and counting systems and the symbols 
that we use for numbers. We will look at our own modern (Western) 
number system as well those of a couple of selected civilizations to 
see the differences and diversity that is possible when humans start 
counting. The second idea we will look at will be base systems. By 
comparing our own base-ten (decimal) system with other bases, we 
will quickly become aware that the system that we are so used to, 
when slightly changed, will challenge our notions about numbers 
and what symbols for those numbers actually mean. 

Recognition of More vs. Less 

The idea of number and the process of counting goes back far 
beyond history began to be recorded. There is some archeological 
evidence that suggests that humans were counting as far back as 
50,000 years ago.2 However, we do not really know how this process 

2. Eves, p. 9. 
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started or developed over time. The best we can do is to make a 
good guess as to how things progressed. It is probably not hard to 
believe that even the earliest humans had some sense of more and 
less. Even some small animals have been shown to have such a sense. 
For example, one naturalist tells of how he would secretly remove 
one egg each day from a plover’s nest. The mother was diligent 
in laying an extra egg every day to make up for the missing egg. 
Some research has shown that hens can be trained to distinguish 
between even and odd numbers of pieces of food.3 With these sorts 
of findings in mind, it is not hard to conceive that early humans had 
(at least) a similar sense of more and less. However, our conjectures 
about how and when these ideas emerged among humans are 
simply that; educated guesses based on our own assumptions of 
what might or could have been. 

The Need for Simple Counting 

As societies and humankind evolved, simply having a sense of more 
or less, even or odd, etc., would prove to be insufficient to meet the 
needs of everyday living. As tribes and groups formed, it became 
important to be able to know how many members were in the 
group, and perhaps how many were in the enemy’s camp. Certainly 
it was important for them to know if the flock of sheep or other 
possessed animals were increasing or decreasing in size. “Just how 
many of them do we have, anyway?” is a question that we do not 
have a hard time imagining them asking themselves (or each other). 

In order to count items such as animals, it is often conjectured 
that one of the earliest methods of doing so would be with “tally 
sticks.” These are objects used to track the numbers of items to 

3. McLeish, John; The Story of Numbers—How 
Mathematics Has Shaped Civilization, p. 7. 

Numeration  |  89



Figure 1. 

be counted. With this method, each “stick” (or pebble, or whatever 
counting device being used) represents one animal or object. This 
method uses the idea of one to one correspondence. In a one to one 
correspondence, items that are being counted are uniquely linked 
with some counting tool. 

In the picture to the right, 
you see each stick 
corresponding to one horse. By 
examining the collection of 
sticks in hand one knows how 
many animals should be 
present. You can imagine the 
usefulness of such a system, at 
least for smaller numbers of 
items to keep track of. If a 
herder wanted to “count off” his 
animals to make sure they were 
all present, he could mentally 
(or methodically) assign each 
stick to one animal and continue to do so until he was satisfied that 
all were accounted for. 

Of course, in our modern system, we have replaced the sticks 
with more abstract objects. In particular, the top stick is replaced 
with our symbol “1,” the second stick gets replaced by a “2” and the 
third stick is represented by the symbol “3,” but we are getting ahead 
of ourselves here. These modern symbols took many centuries to 
emerge. 

Another possible way of employing the “tally stick” counting 
method is by making marks or cutting notches into pieces of wood, 
or even tying knots in string (as we shall see later). In 1937, Karl 
Absolom discovered a wolf bone that goes back possibly 30,000 
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years. It is believed to be a counting device.4 Another example of 
this kind of tool is the Ishango Bone, discovered in 1960 at Ishango, 
and shown below.5 It is reported to be between six and nine 
thousand years old and shows what appear to be markings used to 
do counting of some sort. 

The markings on rows (a) and (b) each add up to 60. Row (b) 
contains the prime numbers between 10 and 20. Row (c) seems to 
illustrate for the method of doubling and multiplication used by the 
Egyptians. It is believed that this may also represent a lunar phase 
counter. 

Figure 2. 

4. Bunt, Lucas; Jones, Phillip; Bedient, Jack; The Historical 
Roots of Elementary Mathematics, p. 2. 

5. http://www.math.buffalo.edu/mad/Ancient-Africa/
mad_zaire-uganda.html 
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Spoken Words 

As methods for counting developed, and as language progressed as 
well, it is natural to expect that spoken words for numbers would 
appear. Unfortunately, the developments of these words, especially 
those corresponding to the numbers from one through ten, are not 
easy to trace. Past ten, however, we do see some patterns: 

• Eleven comes from “ein lifon,” meaning “one left over.” 
• Twelve comes from “twe lif,” meaning “two left over.” 
• Thirteen comes from “Three and ten” as do fourteen through 

nineteen. 
• Twenty appears to come from “twe-tig” which means “two 

tens.” 
• Hundred probably comes from a term meaning “ten times.” 

Written Numbers 

When we speak of “written” numbers, we have to be careful because 
this could mean a variety of things. It is important to keep in mind 
that modern paper is only a little more than 100 years old, so 
“writing” in times past often took on forms that might look quite 
unfamiliar to us today. 

As we saw earlier, some might consider wooden sticks with 
notches carved in them as writing as these are means of recording 
information on a medium that can be “read” by others. Of course, 
the symbols used (simple notches) certainly did not leave a lot of 
flexibility for communicating a wide variety of ideas or information. 

Other mediums on which “writing” may have taken place include 
carvings in stone or clay tablets, rag paper made by hand (twelfth 
century in Europe, but earlier in China), papyrus (invented by the 
Egyptians and used up until the Greeks), and parchments from 
animal skins. And these are just a few of the many possibilities. 
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These are just a few examples of early methods of counting and 
simple symbols for representing numbers. Extensive books, articles 
and research have been done on this topic and could provide 
enough information to fill this entire course if we allowed it to. 
The range and diversity of creative thought that has been used in 
the past to describe numbers and to count objects and people is 
staggering. Unfortunately, we don’t have time to examine them all, 
but it is fun and interesting to look at one system in more detail to 
see just how ingenious people have been. 

The Number and Counting System of the Inca 
Civilization 

Background 

There is generally a lack of books and research material concerning 
the historical foundations of the Americas. Most of the “important” 
information available concentrates on the eastern hemisphere, with 
Europe as the central focus. The reasons for this may be twofold: 
first, it is thought that there was a lack of specialized mathematics 
in the American regions; second, many of the secrets of ancient 
mathematics in the Americas have been closely guarded.6 The 
Peruvian system does not seem to be an exception here. Two 
researchers, Leland Locke and Erland Nordenskiold, have carried 
out research that has attempted to discover what mathematical 
knowledge was known by the Incas and how they used the Peruvian 
quipu, a counting system using cords and knots, in their 

6. Diana, Lind Mae; The Peruvian Quipu in Mathematics 
Teacher, Issue 60 (Oct., 1967), p. 623–28. 
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mathematics. These researchers have come to certain beliefs about 
the quipu that we will summarize here. 

Counting Boards 

It should be noted that the Incas did not have a complicated system 
of computation. Where other peoples in the regions, such as the 
Mayans, were doing computations related to their rituals and 
calendars, the Incas seem to have been more concerned with the 
simpler task of record-keeping. To do this, they used what are called 
the “quipu” to record quantities of items. (We will describe them 
in more detail in a moment.) However, they first often needed to 
do computations whose results would be recorded on quipu. To do 
these computations, they would sometimes use a counting board 
constructed with a slab of stone. In the slab were cut rectangular 
and square compartments so that an octagonal (eight-sided) region 
was left in the middle. Two opposite corner rectangles were raised. 
Another two sections were mounted on the original surface of the 
slab so that there were actually three levels available. In the figure 
shown, the darkest shaded corner regions represent the highest, 
third level. The lighter shaded regions surrounding the corners are 
the second highest levels, while the clear white rectangles are the 
compartments cut into the stone slab. 
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Figure 3. 

Pebbles were used to keep accounts and their positions within the 
various levels and compartments gave totals. For example, a pebble 
in a smaller (white) compartment represented one unit. Note that 
there are 12 such squares around the outer edge of the figure. If 
a pebble was put into one of the two (white) larger, rectangular 
compartments, its value was doubled. When a pebble was put in 
the octagonal region in the middle of the slab, its value was tripled. 
If a pebble was placed on the second (shaded) level, its value was 
multiplied by six. And finally, if a pebble was found on one of the two 
highest corner levels, its value was multiplied by twelve. Different 
objects could be counted at the same time by representing different 
objects by different colored pebbles. 
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Example 1 

Suppose you have the following counting board with two 
different kind of pebbles places as illustrated. Let the solid 
black pebble represent a dog and the striped pebble 
represent a cat. How many dogs are being represented? 

Solution 

Figure 4. 

There are two black pebbles in the outer square 
regions…these represent 2 dogs. There are three black 
pebbles in the larger (white) rectangular compartments. 
These represent 6 dogs. There is one black pebble in the 
middle region…this represents 3 dogs. There are three 
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black pebbles on the second level…these represent 18 
dogs. Finally, there is one black pebble on the highest 
corner level…this represents 12 dogs. We then have a total 
of 2+6+3+18+12 = 41 dogs. 

Try It Now 

How many cats are represented on this board? 
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Figure 5. 

The Quipu 

This kind of board was good 
for doing quick computations, 
but it did not provide a good 
way to keep a permanent 
recording of quantities or 
computations. For this purpose, 
they used the quipu. The quipu 
is a collection of cords with 
knots in them. These cords and 
knots are carefully arranged so 
that the position and type of 
cord or knot gives specific 
information on how to decipher 
the cord. 

A quipu is made up of a main 
cord which has other cords 
(branches) tied to it. See 
pictures to the right.7 

Locke called the branches H 
cords. They are attached to the main cord. B cords, in turn, were 
attached to the H cords. Most of these cords would have knots on 
them. Rarely are knots found on the main cord, however, and tend 
to be mainly on the H and B cords. A quipu might also have a 
“totalizer” cord that summarizes all of the information on the cord 
group in one place. 

Locke points out that there are three types of knots, each 
representing a different value, depending on the kind of knot used 
and its position on the cord. The Incas, like us, had a decimal (base-

7. Diana, Lind Mae; The Peruvian Quipu in Mathematics 
Teacher, Issue 60 (Oct., 1967), p. 623–28. 
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ten) system, so each kind of knot had a specific decimal value. The 
Single knot, pictured in the middle of figure 68 was used to denote 
tens, hundreds, thousands, and ten thousands. They would be on 
the upper levels of the H cords. The figure-eight knot on the end 
was used to denote the integer “one.” Every other integer from 2 to 
9 was represented with a long knot, shown on the left of the figure. 
(Sometimes long knots were used to represents tens and hundreds.) 
Note that the long knot has several turns in it…the number of turns 
indicates which integer is being represented. The units (ones) were 
placed closest to the bottom of the cord, then tens right above 
them, then the hundreds, and so on. 

Figure 6 

In order to make reading these pictures easier, we will adopt a 
convention that is consistent. For the long knot with turns in it 
(representing the numbers 2 through 9), we will use the following 
notation: 

The four horizontal bars represent four turns and the curved arc 
on the right links the four turns together. This would represent the 
number 4. 

8. http://wiscinfo.doit.wisc.edu/chaysimire/titulo2/
khipus/what.htm 
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Figure 7. 

We will represent the single knot with a large dot ( · ) and we will 
represent the figure eight knot with a sideways eight ( ∞ ). 

Example 2 

What number is 
represented on the cord 
shown in figure 7? 

Solution 

On the cord, we see a 
long knot with four turns in 
it…this represents four in the ones place. Then 5 single 
knots appear in the tens position immediately above that, 
which represents 5 tens, or 50. Finally, 4 single knots are 
tied in the hundreds, representing four 4 hundreds, or 400. 
Thus, the total shown on this cord is 454. 

Try It Now 

What numbers are represented on each of the four 
cords hanging from the main cord? 
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Figure 8. 

The colors of the cords had meaning and could distinguish one 
object from another. One color could represent llamas, while a 
different color might represent sheep, for example. When all the 
colors available were exhausted, they would have to be re-used. 
Because of this, the ability to read the quipu became a complicated 
task and specially trained individuals did this job. They were called 
Quipucamayoc, which means keeper of the quipus. They would 
build, guard, and decipher quipus. 
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Figure 9. 

As you can see from this 
photograph of an actual quipu 
(figure 9), they could get quite 
complex. 

There were various purposes 
for the quipu. Some believe that 
they were used to keep an 
account of their traditions and 
history, using knots to record 
history rather than some other 
formal system of writing. One 
writer has even suggested that the quipu replaced writing as it 
formed a role in the Incan postal system.9 Another proposed use of 
the quipu is as a translation tool. After the conquest of the Incas by 
the Spaniards and subsequent “conversion” to Catholicism, an Inca 
supposedly could use the quipu to confess their sins to a priest. Yet 
another proposed use of the quipu was to record numbers related 
to magic and astronomy, although this is not a widely accepted 
interpretation. 

The mysteries of the quipu have not been fully explored yet. 
Recently, Ascher and Ascher have published a book, The Code of 
the Quipu: A Study in Media, Mathematics, and Culture, which is 
“an extensive elaboration of the logical-numerical system of the 
quipu.”10 For more information on the quipu, you may want to check 
out “Khipus: a unique Huarochiri legacy.” 

We are so used to seeing the symbols 1, 2, 3, 4, etc. that it may 
be somewhat surprising to see such a creative and innovative way 
to compute and record numbers. Unfortunately, as we proceed 

9. Diana, Lind Mae; The Peruvian Quipu in Mathematics 
Teacher, Issue 60 (Oct., 1967), p. 623–28. 

10. http://www.cs.uidaho.edu/~casey931/seminar/
quipu.html 
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through our mathematical education in grade and high school, we 
receive very little information about the wide range of number 
systems that have existed and which still exist all over the world. 
That’s not to say our own system is not important or efficient. The 
fact that it has survived for hundreds of years and shows no sign of 
going away any time soon suggests that we may have finally found a 
system that works well and may not need further improvement, but 
only time will tell that whether or not that conjecture is valid or not. 
We now turn to a brief historical look at how our current system 
developed over history. 

The Hindu—Arabic Number System 

The Evolution of a System 

Our own number system, composed of the ten symbols 
{0,1,2,3,4,5,6,7,8,9} is called the Hindu-Arabic system. This is a base-
ten (decimal) system since place values increase by powers of ten. 
Furthermore, this system is positional, which means that the 
position of a symbol has bearing on the value of that symbol within 
the number. For example, the position of the symbol 3 in the 
number 435,681 gives it a value much greater than the value of the 
symbol 8 in that same number. We’ll explore base systems more 
thoroughly later. The development of these ten symbols and their 
use in a positional system comes to us primarily from India.11 

11. http://www-groups.dcs.st-and.ac.uk/~history/
HistTopics/Indian_numerals.html 
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Figure 10. Al-Biruni 

It was not until the 
fifteenth century that the 
symbols that we are familiar 
with today first took form in 
Europe. However, the history of 
these numbers and their 
development goes back 
hundreds of years. One 
important source of 
information on this topic is the 
writer al-Biruni, whose picture 
is shown in figure 10.12 Al-
Biruni, who was born in modern 
day Uzbekistan, had visited 
India on several occasions and 
made comments on the Indian 
number system. When we look at the origins of the numbers that 
al-Biruni encountered, we have to go back to the third century BCE. 
to explore their origins. It is then that the Brahmi numerals were 
being used. 

The Brahmi numerals were more complicated than those used 
in our own modern system. They had separate symbols for the 
numbers 1 through 9, as well as distinct symbols for 10, 100, 1000,…, 
also for 20, 30, 40,…, and others for 200, 300, 400, …, 900. The 
Brahmi symbols for 1, 2, and 3 are shown below.13 

12. http://www-groups.dcs.st-and.ac.uk/~history/
Mathematicians/Al-Biruni.html 

13. http://www-groups.dcs.st-and.ac.uk/~history/
HistTopics/Indian_numerals.html 
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These numerals were used all the way up to the fourth century 
CE, with variations through time and geographic location. For 
example, in the first century CE, one particular set of Brahmi 
numerals took on the following form:14 

From the fourth century on, you can actually trace several 
different paths that the Brahmi numerals took to get to different 
points and incarnations. One of those paths led to our current 
numeral system, and went through what are called the Gupta 
numerals. The Gupta numerals were prominent during a time ruled 
by the Gupta dynasty and were spread throughout that empire 
as they conquered lands during the fourth through sixth centuries. 
They have the following form:15 

How the numbers got to their Gupta form is open to considerable 

14. http://www-groups.dcs.st-and.ac.uk/~history/
HistTopics/Indian_numerals.html 

15. Ibid. 

Numeration  |  105

http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Indian_numerals.html
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Indian_numerals.html


debate. Many possible hypotheses have been offered, most of which 
boil down to two basic types.16 The first type of hypothesis states 
that the numerals came from the initial letters of the names of the 
numbers. This is not uncommon . . . the Greek numerals developed 
in this manner. The second type of hypothesis states that they 
were derived from some earlier number system. However, there are 
other hypotheses that are offered, one of which is by the researcher 
Ifrah. His theory is that there were originally nine numerals, each 
represented by a corresponding number of vertical lines. One 
possibility is this:17 

Because these symbols would have taken a lot of time to write, 
they eventually evolved into cursive symbols that could be written 
more quickly. If we compare these to the Gupta numerals above, 
we can try to see how that evolutionary process might have taken 
place, but our imagination would be just about all we would have 
to depend upon since we do not know exactly how the process 
unfolded. 

The Gupta numerals eventually evolved into another form of 
numerals called the Nagari numerals, and these continued to evolve 
until the eleventh century, at which time they looked like this:18 

16. Ibid. 
17. Ibid. 
18. Ibid. 
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Figure 11. 
Devangari, 
eighth 
century 

Figure 12. 
West Arab 
Gobar, tenth 
century 

Figure 13. 
Spain, 976 
BCE 

Note that by this time, the symbol for 0 has appeared! The Mayans 
in the Americas had a symbol for zero long before this, however, as 
we shall see later in the chapter. 

These numerals were adopted by the Arabs, most likely in the 
eighth century during Islamic incursions into the northern part of 
India.19 It is believed that the Arabs were instrumental in spreading 
them to other parts of the world, including Spain (see below). 

Other examples of variations up to the eleventh century 
include:20 

19. Katz, page 230 
20. Burton, David M., History of Mathematics, An 

Introduction, p. 254–255 
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Finally, figure 1421 shows various forms of these numerals as they 
developed and eventually converged to the fifteenth century in 
Europe. 

Figure 14. 

The Positional System 

More important than the form of the number symbols is the 
development of the place value system. Although it is in slight 
dispute, the earliest known document in which the Indian system 
displays a positional system dates back to 346 CE. However, some 

21. Katz, page 231. 

108  |  Numeration



evidence suggests that they may have actually developed a 
positional system as far back as the first century CE. 

The Indians were not the first to use a positional system. The 
Babylonians (as we will see in Chapter 3) used a positional system 
with 60 as their base. However, there is not much evidence that 
the Babylonian system had much impact on later numeral systems, 
except with the Greeks. Also, the Chinese had a base-10 system, 
probably derived from the use of a counting board.22 Some believe 
that the positional system used in India was derived from the 
Chinese system. 

Wherever it may have originated, it appears that around 600 CE, 
the Indians abandoned the use of symbols for numbers higher than 
nine and began to use our familiar system where the position of the 
symbol determines its overall value.23 Numerous documents from 
the seventh century demonstrate the use of this positional system. 

Interestingly, the earliest dated inscriptions using the system with 
a symbol for zero come from Cambodia. In 683, the 605th year of 
the Saka era is written with three digits and a dot in the middle. The 
608th year uses three digits with a modern 0 in the middle.24 The 
dot as a symbol for zero also appears in a Chinese work (Chiu-chih 
li). The author of this document gives a strikingly clear description 
of how the Indian system works: 

Using the [Indian] numerals, multiplication and division are 
carried out. Each numeral is written in one stroke. When 
a number is counted to ten, it is advanced into the higher 
place. In each vacant place a dot is always put. Thus the 
numeral is always denoted in each place. Accordingly there 

22. Ibid, page 230 
23. Ibid, page 231. 
24. Ibid, page 232. 
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can be no error in determining the place. With the numerals, 
calculations is easy.25 

Transmission to Europe 

It is not completely known how the system got transmitted to 
Europe. Traders and travelers of the Mediterranean coast may have 
carried it there. It is found in a tenth-century Spanish manuscript 
and may have been introduced to Spain by the Arabs, who invaded 
the region in 711 CE and were there until 1492. 

In many societies, a division formed between those who used 
numbers and calculation for practical, every day business and those 
who used them for ritualistic purposes or for state business.26 The 
former might often use older systems while the latter were inclined 
to use the newer, more elite written numbers. Competition between 
the two groups arose and continued for quite some time. 

25. Ibid, page 232. 
26. McLeish, p. 18 
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Figure 15. 

In a fourteenth century 
manuscript of Boethius’ The 
Consolations of Philosophy, 
there appears a well-known 
drawing of two 
mathematicians. One is a 
merchant and is using an 
abacus (the “abacist”). The 
other is a Pythagorean 
philosopher (the “algorist”) 
using his “sacred” numbers. 
They are in a competition that 
is being judged by the goddess 
of number. By 1500 CE, 
however, the newer symbols 
and system had won out and has persevered until today. The Seattle 
Times recently reported that the Hindu-Arabic numeral system has 
been included in the book The Greatest Inventions of the Past 2000 
Years.27 

One question to answer is why the Indians would develop such 
a positional notation. Unfortunately, an answer to that question is 
not currently known. Some suggest that the system has its origins 
with the Chinese counting boards. These boards were portable and 
it is thought that Chinese travelers who passed through India took 
their boards with them and ignited an idea in Indian 
mathematics.28 Others, such as G. G. Joseph propose that it is the 
Indian fascination with very large numbers that drove them to 
develop a system whereby these kinds of big numbers could easily 

27. http://seattletimes.nwsource.com/news/health-
science/html98/invs_20000201.html, Seattle Times, 
Feb. 1, 2000 

28. Ibid, page 232. 
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be written down. In this theory, the system developed entirely 
within the Indian mathematical framework without considerable 
influence from other civilizations. 

The Development and Use of Different Number 
Bases 

Introduction and Basics 

During the previous discussions, we have been referring to 
positional base systems. In this section of the chapter, we will 
explore exactly what a base system is and what it means if a system 
is “positional.” We will do so by first looking at our own familiar, 
base-ten system and then deepen our exploration by looking at 
other possible base systems. In the next part of this section, we 
will journey back to Mayan civilization and look at their unique base 
system, which is based on the number 20 rather than the number 
10. 

A base system is a structure within which we count. The easiest 
way to describe a base system is to think about our own base-ten 
system. The base-ten system, which we call the “decimal” system, 
requires a total of ten different symbols/digits to write any number. 
They are, of course, 0, 1, 2, . . . , 9. 

The decimal system is also an example of a positional base system, 
which simply means that the position of a digit gives its place value. 
Not all civilizations had a positional system even though they did 
have a base with which they worked. 

In our base-ten system, a number like 5,783,216 has meaning to us 
because we are familiar with the system and its places. As we know, 
there are six ones, since there is a 6 in the ones place. Likewise, 
there are seven “hundred thousands,” since the 7 resides in that 
place. Each digit has a value that is explicitly determined by its 
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position within the number. We make a distinction between digit, 
which is just a symbol such as 5, and a number, which is made up of 
one or more digits. We can take this number and assign each of its 
digits a value. One way to do this is with a table, which follows: 

5,000,000 = 5 × 1,000,000 = 5 × 106 Five million 

+700,000 = 7 × 100,000 = 7 × 105 Seven hundred thousand 

+80,000 = 8 × 10,000 = 8 × 104 Eighty thousand 

+3,000 = 3 × 1000 = 3 × 103 Three thousand 

+200 = 2 × 100 = 2 × 102 Two hundred 

+10 = 1 × 10 = 1 × 101 Ten 

+6 = 6 × 1 = 6 × 100 Six 

5,783,216 Five million, seven hundred eighty-three thousand, two 
hundred sixteen 

From the third column in the table we can see that each place is 
simply a multiple of ten. Of course, this makes sense given that our 
base is ten. The digits that are multiplying each place simply tell us 
how many of that place we have. We are restricted to having at most 
9 in any one place before we have to “carry” over to the next place. 
We cannot, for example, have 11 in the hundreds place. Instead, we 
would carry 1 to the thousands place and retain 1 in the hundreds 
place. This comes as no surprise to us since we readily see that 11 
hundreds is the same as one thousand, one hundred. Carrying is a 
pretty typical occurrence in a base system. 

However, base-ten is not the only option we have. Practically any 
positive integer greater than or equal to 2 can be used as a base for a 
number system. Such systems can work just like the decimal system 
except the number of symbols will be different and each position 
will depend on the base itself. 
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Other Bases 

For example, let’s suppose we adopt a base-five system. The only 
modern digits we would need for this system are 0,1,2,3 and 4. What 
are the place values in such a system? To answer that, we start with 
the ones place, as most base systems do. However, if we were to 
count in this system, we could only get to four (4) before we had 
to jump up to the next place. Our base is 5, after all! What is that 
next place that we would jump to? It would not be tens, since we are 
no longer in base-ten. We’re in a different numerical world. As the 
base-ten system progresses from 100 to 101, so the base-five system 
moves from 50 to 51 = 5. Thus, we move from the ones to the fives. 

After the fives, we would move to the 52 place, or the twenty fives. 
Note that in base-ten, we would have gone from the tens to the 
hundreds, which is, of course, 102. 

Let’s take an example and build a table. Consider the number 
30412 in base five. We will write this as 304125, where the subscript 
5 is not part of the number but indicates the base we’re using. First 
off, note that this is NOT the number “thirty thousand, four hundred 
twelve.” We must be careful not to impose the base-ten system on 
this number. Here’s what our table might look like. We will use it to 
convert this number to our more familiar base-ten system. 

Base 5 This column coverts to base-ten In Base-Ten 

3 × 54 = 3 × 625 = 1875 

+ 0 × 53 = 0 × 125 = 0 

+ 4 × 52 = 4 × 25 = 100 

+ 1 × 51 = 1 × 5 = 5 

+ 2 × 50 = 2 × 1 = 2 

Total 1982 

As you can see, the number 304125 is equivalent to 1,982 in base-ten. 
We will say 304125 = 198210. All of this may seem strange to you, but 
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that’s only because you are so used to the only system that you’ve 
ever seen. 

Example 3 

Convert 62347 to a base 10 number. 

Solution 

We first note that we are given a base-7 number that we 
are to convert. Thus, our places will start at the ones (70), 
and then move up to the 7s, 49s (72), etc. Here’s the 
breakdown: 

Base 7 Convert Base 10 

= 6 × 73 = 6 × 343 = 2058 

+ = 2 × 72 = 2 × 49 = 98 

+ = 3 × 7 = 3 × 7 = 21 

+ = 4 × 1 = 4 × 1 = 4 

Total 2181 

Thus 62347 = 218110 
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Try It Now 

Convert 410657 to a base 10 number. 

Converting from Base 10 to Other Bases 

Converting from an unfamiliar base to the familiar decimal system 
is not that difficult once you get the hang of it. It’s only a matter 
of identifying each place and then multiplying each digit by the 
appropriate power. However, going the other direction can be a 
little trickier. Suppose you have a base-ten number and you want to 
convert to base-five. Let’s start with some simple examples before 
we get to a more complicated one. 

Example 4 

Convert twelve to a base-five number. 

Solution 

We can probably easily see that we can rewrite this 
number as follows: 
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12 = (2 × 5) + (2 × 1) 

Hence, we have two fives and 2 ones. Hence, in base-five 
we would write twelve as 225. Thus, 1210 =225. 

Example 5 

Convert sixty-nine to a base-five number. 

Solution 

We can see now that we have more than 25, so we 
rewrite sixty-nine as follows: 

69 = (2 × 25) + (3 × 5) + (4 × 1) 

Here, we have two twenty-fives, 3 fives, and 4 ones. 
Hence, in base five we have 234. Thus, 6910 = 2345. 

Example 6 

Convert the base-seven number 32617 to base 10. 
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Solution 

The powers of 7 are: 

70 = 1 
71 = 7 
72 = 49 
73 = 343 
Etc… 

32617 = (3 × 343) + (2 × 49) + (6 × 7) + (1 × 1) =117010. 

Thus 32617 = 117010. 

Try It Now 

Convert 143 to base 5 

118  |  Numeration



Try It Now 

Convert the base-three number 210213 to base 10. 

In general, when converting from base-ten to some other base, it is 
often helpful to determine the highest power of the base that will 
divide into the given number at least once. 

In the last example, 52 = 25 is the largest power of five that is 
present in 69, so that was our starting point. If we had moved to 53 

= 125, then 125 would not divide into 69 at least once. 

Converting from Base 10 to Base b 

1. Find the highest power of the base b that will 
divide into the given number at least once and 
then divide. 

2. Write down the whole number part, then use 
the remainder from division in the next step. 

3. Repeat step two, dividing by the next highest 
power of the base b, writing down the whole 
number part (including 0), and using the 
remainder in the next step. 

4. Continue until the remainder is smaller than the 
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base. This last remainder will be in the “ones” 
place. 

5. Collect all your whole number parts to get your 
number in base b notation. 

Example 7 

Convert the base-ten number 348 to base-five. 

Solution 

The powers of five are: 

50 = 1 
51 = 5 
52 = 25 
53 = 125 
54 = 625 
Etc… 

Since 348 is smaller than 625, but bigger than 125, we see 
that 53 = 125 is the highest power of five present in 348. So 
we divide 125 into 348 to see how many of them there are: 

348 ÷ 125 = 2 with remainder 98 

We write down the whole part, 2, and continue with the 
remainder. There are 98 left over, so we see how many 25s 

120  |  Numeration



(the next smallest power of five) there are in the remainder: 

98 ÷ 25 = 3 with remainder 23 

We write down the whole part, 2, and continue with the 
remainder. There are 23 left over, so we look at the next 
place, the 5s: 

23 ÷ 5 = 4 with remainder 3 

This leaves us with 3, which is less than our base, so this 
number will be in the “ones” place. We are ready to 
assemble our base-five number: 

348 = (2 × 53) + (3 × 52) + (4 × 51) + (3 × 1) 

Hence, our base-five number is 2343. We’ll say that 34810 

= 23435. 

Example 8 

Convert the base-ten number 4,509 to base-seven. 

Solution 

The powers of 7 are: 

70 = 1 
71 = 7 
72 = 49 
73 = 343 
74 = 2401 
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75 = 16807 
Etc… 

The highest power of 7 that will divide into 4,509 is 74 = 
2401. With division, we see that it will go in 1 time with a 
remainder of 2108. So we have 1 in the 74 place. 

The next power down is 73 = 343, which goes into 2108 six 
times with a new remainder of 50. So we have 6 in the 73 

place. 

The next power down is 72 = 49, which goes into 50 once 
with a new remainder of 1. So there is a 1 in the 72 place. 

The next power down is 71 but there was only a 
remainder of 1, so that means there is a 0 in the 7s place 
and we still have 1 as a remainder. 

That, of course, means that we have 1 in the ones place. 

Putting all of this together means that 4,50910 = 161017. 

4,509 ÷ 74 = 1 R 21082108 ÷ 73 = 6 R 50 

50 ÷ 72 = 1 R 1 

1 ÷ 71 = 1 

4,50910 = 161017. 
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Try It Now 

Convert 65710 to a base 4 number. 

Try It Now 

Convert 837710 to a base 8 number. 

Another Method For Converting From Base 10 to 
Other Bases 

As you read the solution to this last example and attempted the “Try 
it Now” problems, you may have had to repeatedly stop and think 
about what was going on. The fact that you are probably struggling 
to follow the explanation and reproduce the process yourself is 
mostly due to the fact that the non-decimal systems are so 
unfamiliar to you. In fact, the only system that you are probably 
comfortable with is the decimal system. 

As budding mathematicians, you should always be asking 
questions like “How could I simplify this process?” In general, that is 
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one of the main things that mathematicians do: they look for ways to 
take complicated situations and make them easier or more familiar. 
In this section we will attempt to do that. 

To do so, we will start by looking at our own decimal system. What 
we do may seem obvious and maybe even intuitive but that’s the 
point. We want to find a process that we readily recognize works 
and makes sense to us in a familiar system and then use it to extend 
our results to a different, unfamiliar system. 

Let’s start with the decimal number, 486310. We will convert this 
number to base 10. Yeah, I know it’s already in base 10, but if you 
carefully follow what we’re doing, you’ll see it makes things work out 
very nicely with other bases later on. We first note that the highest 
power of 10 that will divide into 4863 at least once is 103 = 1000. In 
general, this is the first step in our new process; we find the highest 
power that a given base that will divide at least once into our given 
number. 

We now divide 1000 into 4863: 
4863 ÷ 1000 = 4.863 

This says that there are four thousands in 4863 (obviously). 
However, it also says that there are 0.863 thousands in 4863. This 
fractional part is our remainder and will be converted to lower 
powers of our base (10). If we take that decimal and multiply by 10 
(since that’s the base we’re in) we get the following: 

0.863 × 10 = 8.63 
Why multiply by 10 at this point? We need to recognize here that 

0.863 thousands is the same as 8.63 hundreds. Think about that until 
it sinks in. 

(0.863)(1000) = 863 
(8.63)(100) = 863 

These two statements are equivalent. So, what we are really doing 
here by multiplying by 10 is rephrasing or converting from one place 
(thousands) to the next place down (hundreds). 

0.863 × 10 ⇒ 8.63 
(Parts of Thousands) × 10 ⇒ Hundreds 

What we have now is 8 hundreds and a remainder of 0.63 
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hundreds, which is the same as 6.3 tens. We can do this again with 
the 0.63 that remains after this first step. 

0.63 × 10 ⇒ 6.3 
Hundreds × 10 ⇒ Tens 

So we have six tens and 0.3 tens, which is the same as 3 ones, our 
last place value. 

Now here’s the punch line. Let’s put all of the together in one 
place: 

Converting from Base 10 to Base b: Another methodNote that in 
each step, the remainder is carried down to the next step and 
multiplied by 10, the base. Also, at each step, the whole number part, 
which is circled, gives the digit that belongs in that particular place. 
What is amazing is that this works for any base! So, to convert from 
a base 10 number to some other base, b, we have the following steps 
we can follow: 

Converting from Base 10 to Base b: 
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Another method 

1. Find the highest power of the base b that will 
divide into the given number at least once and 
then divide. 

2. Keep the whole number part, and multiply the 
fractional part by the base b. 

3. Repeat step two, keeping the whole number 
part (including 0), carrying the fractional part to 
the next step until only a whole number result is 
obtained. 

4. Collect all your whole number parts to get your 
number in base b notation. 

We will illustrate this procedure with some examples. 

Example 9 

Convert the base 10 number, 34810, to base 5. 

Solution 

This is actually a conversion that we have done in a 
previous example. The powers of five are: 
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50 = 1 
51 = 5 
52 = 25 
53 = 125 
54 = 625 
Etc… 

The highest power of five that will go into 348 at least 
once is 53. 

We divide by 125 and then proceed. 

By keeping all the whole number parts, from top bottom, 
gives 2343 as our base 5 number. Thus, 23435 = 34810. 

We can compare our result with what we saw earlier, or 
simply check with our calculator, and find that these two 
numbers really are equivalent to each other. 
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Example 10 

Convert the base 10 number, 300710, to base 5. 

Solution 

The highest power of 5 that divides at least once into 
3007 is 54 = 625. Thus, we have: 

3007 ÷ 625 = ④.8112 
0.8112 × 5 = ④.056 
0.056 × 5 = ⓪.28 
0.28 × 5 = ①0.4 
0.4 × 5 = ②0.0 

This gives us that 300710 = 440125. Notice that in the third 
line that multiplying by 5 gave us 0 for our whole number 
part. We don’t discard that! The zero tells us that a zero in 
that place. That is, there are no 52s in this number. 

This last example shows the importance of using a calculator in 
certain situations and taking care to avoid clearing the calculator’s 
memory or display until you get to the very end of the process. 

Example 11 

Convert the base 10 number, 6320110, to base 7. 
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Solution 

The powers of 7 are: 

70 = 1 
71 = 7 
72 = 49 
73 = 343 
74 = 2401 
75 = 16807 
etc… 

The highest power of 7 that will divide at least once into 
63201 is 75. When we do the initial division on a calculator, 
we get the following: 

63201 ÷ 75 = 3.760397453 

The decimal part actually fills up the calculators display 
and we don’t know if it terminates at some point or perhaps 
even repeats down the road. So if we clear our calculator at 
this point, we will introduce error that is likely to keep this 
process from ever ending. To avoid this problem, we leave 
the result in the calculator and simply subtract 3 from this 
to get the fractional part all by itself. Do not round off! 
Subtraction and then multiplication by seven gives: 

63201 ÷ 75 = ƒ③.760397453 
0.760397453 × 7 = …⑤.322782174 
0.322782174 × 7 =‚ ②.259475219 
0.259475219 × 7 =? ①.816326531 
0.816326531 × 7 = ⑤….714285714 
0.714285714 × 7 = …⑤.000000000 

Numeration  |  129



Yes, believe it or not, that last product is exactly 5, as long 
as you don’t clear anything out on your calculator. This gives 
us our final result: 6320110 = 3521557. 

If we round, even to two decimal places in each step, 
clearing our calculator out at each step along the way, we 
will get a series of numbers that do not terminate, but 
begin repeating themselves endlessly. (Try it!) We end up 
with something that doesn’t make any sense, at least not in 
this context. So be careful to use your calculator cautiously 
on these conversion problems. 

Also, remember that if your first division is by 75, then 
you expect to have 6 digits in the final answer, 
corresponding to the places for 75, 74, and so on down to 70. 
If you find yourself with more than 6 digits due to rounding 
errors, you know something went wrong. 

Try It Now 

Convert the base 10 number, 935210, to base 5. 

130  |  Numeration



Try It Now 

Convert the base 10 number, 1500, to base 3. 

Be careful not to clear your calculator on this one. 
Also, if you’re not careful in each step, you may not get 
all of the digits you’re looking for, so move slowly and 
with caution. 

The Mayan Numeral System 

Background 

As you might imagine, the development of a base system is an 
important step in making the counting process more efficient. Our 
own base-ten system probably arose from the fact that we have 
10 fingers (including thumbs) on two hands. This is a natural 
development. However, other civilizations have had a variety of 
bases other than ten. For example, the Natives of Queensland used 
a base-two system, counting as follows: “one, two, two and one, two 
two’s, much.” Some Modern South American Tribes have a base-five 
system counting in this way: “one, two, three, four, hand, hand and 
one, hand and two,” and so on. The Babylonians used a base-sixty 
(sexigesimal) system. In this chapter, we wrap up with a specific 
example of a civilization that actually used a base system other than 
10. 
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The Mayan civilization is generally dated from 1500 BCE to 1700 CE. 
The Yucatan Peninsula (see figure 1629) in Mexico was the scene for 
the development of one of the most advanced civilizations of the 
ancient world. The Mayans had a sophisticated ritual system that 
was overseen by a priestly class. This class of priests developed a 

29. http://www.gorp.com/gorp/location/latamer/
map_maya.htm 
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philosophy with time as divine and eternal.30 The calendar, and 
calculations related to it, were thus very important to the ritual life 
of the priestly class, and hence the Mayan people. In fact, much of 
what we know about this culture comes from their calendar records 
and astronomy data. Another important source of information on 
the Mayans is the writings of Father Diego de Landa, who went to 
Mexico as a missionary in 1549. 

There were two numeral systems 
developed by the Mayans—one for the common people and one for 
the priests. Not only did these two systems use different symbols, 
they also used different base systems. For the priests, the number 
system was governed by ritual. The days of the year were thought 
to be gods, so the formal symbols for the days were decorated 
heads,31 like the sample to the left32 Since the basic calendar was 
based on 360 days, the priestly numeral system used a mixed base 
system employing multiples of 20 and 360. This makes for a 
confusing system, the details of which we will skip. 

30. Bidwell, James; Mayan Arithmetic in Mathematics 
Teacher, Issue 74 (Nov., 1967), p. 762–68. 

31. http://www.ukans.edu/~lctls/Mayan/numbers.html 
32. http://www.ukans.edu/~lctls/Mayan/numbers.html 
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Powers Base-Ten Value Place Name 

207 12,800,000,000 Hablat 

206 64,000,000 Alau 

205 3,200,000 Kinchil 

204 160,000 Cabal 

203 8,000 Pic 

202 400 Bak 

201 20 Kal 

200 1 Hun 

The Mayan Number System 

Instead, we will focus on the numeration system of the “common” 
people, which used a more consistent base system. As we stated 
earlier, the Mayans used a base-20 system, called the “vigesimal” 
system. Like our system, it is positional, meaning that the position 
of a numeric symbol indicates its place value. In the following table 
you can see the place value in its vertical format.33 

33. Bidwell 
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In order to write numbers down, there were only three symbols 
needed in this system. A horizontal bar represented the quantity 5, a 
dot represented the quantity 1, and a special symbol (thought to be 
a shell) represented zero. The Mayan system may have been the first 
to make use of zero as a placeholder/number. The first 20 numbers 
are shown in the table to the right.34 

Unlike our system, where the ones place starts on the right and 
then moves to the left, the Mayan systems places the ones on the 
bottom of a vertical orientation and moves up as the place value 
increases. 

When numbers are written in vertical form, there should never 
be more than four dots in a single place. When writing Mayan 
numbers, every group of five dots becomes one bar. Also, there 
should never be more than three bars in a single place…four bars 
would be converted to one dot in the next place up. It’s the same 
as 10 getting converted to a 1 in the next place up when we carry 
during addition. 

Example 12 

What is the value of this number, which is shown in 
vertical form? 

34. http://www.vpds.wsu.edu/fair_95/gym/UM001.html 
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Solution 

Starting from the bottom, we have the ones place. There 
are two bars and three dots in this place. Since each bar is 
worth 5, we have 13 ones when we count the three dots in 
the ones place. Looking to the place value above it (the 
twenties places), we see there are three dots so we have 
three twenties. 

Hence we can write this number in base-ten as: 

(3 × 201) + (13 × 200) = (3 × 201) + (13 × 1) = 60 + 13 = 73 

Example 13 

What is the value of the following Mayan number? 
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Solution 

This number has 11 in the ones place, zero in the 20s 
place, and 18 in the 202 = 400s place. Hence, the value of 
this number in base-ten is: 

18 × 400 + 0 × 20 + 11 × 1 = 7211. 

Try It Now 

Convert the Mayan number below to base 10. 
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Example 14 

Convert the base 10 number 357510 to Mayan numerals. 

This problem is done in two stages. First we need to 
convert to a base 20 number. We will do so using the 
method provided in the last section of the text. The second 
step is to convert that number to Mayan symbols. 

The highest power of 20 that will divide into 3575 is 202 = 
400, so we start by dividing that and then proceed from 
there: 

3575 ÷ 400 = 8.9375 
0.9375 × 20 = 18.75 
0.75 × 20 = 15.0 

This means that 357510 = 8,18,1520 

The second step is to convert this to Mayan notation. 
This number indicates that we have 15 in the ones position. 
That’s three bars at the bottom of the number. We also have 
18 in the 20s place, so that’s three bars and three dots in the 
second position. Finally, we have 8 in the 400s place, so 
that’s one bar and three dots on the top. We get the 
following: 

Note that in the previous example a new notation was used when we 
wrote 8,18,1520. The commas between the three numbers 8, 18, and 
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15 are now separating place values for us so that we can keep them 
separate from each other. This use of the comma is slightly different 
than how they’re used in the decimal system. When we write a 
number in base 10, such as 7,567,323, the commas are used primarily 
as an aide to read the number easily but they do not separate single 
place values from each other. We will need this notation whenever 
the base we use is larger than 10. 

Writing numbers with bases bigger than 
10 

When the base of a number is larger than 10, separate 
each “digit” with a comma to make the separation of 
digits clear. 

For example, in base 20, to write the number 
corresponding to 17 × 202 + 6 × 201 + 13 × 200, we’d write 
17,6,1320. 

Try It Now 

Convert the base 10 number 1055310 to Mayan 
numerals. 
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Try It Now 

Convert the base 10 number 561710 to Mayan 
numerals. 

Adding Mayan Numbers 

When adding Mayan numbers together, we’ll adopt a scheme that 
the Mayans probably did not use but which will make life a little 
easier for us. 

Example 15 

Add, in Mayan, the numbers 37 and 29:35 

35. http://forum.swarthmore.edu/k12/mayan.math/
mayan2.html 
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First draw a box around each of the vertical places. This 
will help keep the place values from being mixed up. 

Next, put all of the symbols from both numbers into a 
single set of places (boxes), and to the right of this new 
number draw a set of empty boxes where you will place the 
final sum: 

You are now ready to start carrying. Begin with the place 
that has the lowest value, just as you do with Arabic 
numbers. Start at the bottom place, where each dot is 
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worth 1. There are six dots, but a maximum of four are 
allowed in any one place; once you get to five dots, you 
must convert to a bar. Since five dots make one bar, we 
draw a bar through five of the dots, leaving us with one dot 
which is under the four-dot limit. Put this dot into the 
bottom place of the empty set of boxes you just drew: 

Now look at the bars in the bottom place. There are five, 
and the maximum number the place can hold is three. Four 
bars are equal to one dot in the next highest place. 

Whenever we have four bars in a single place we will 
automatically convert that to a dot in the next place up. We 
draw a circle around four of the bars and an arrow up to 
the dots’ section of the higher place. At the end of that 
arrow, draw a new dot. That dot represents 20 just the 
same as the other dots in that place. Not counting the 
circled bars in the bottom place, there is one bar left. One 
bar is under the three-bar limit; put it under the dot in the 
set of empty places to the right. 
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Now there are only three dots in the next highest place, 
so draw them in the corresponding empty box. 

We can see here that we have 3 twenties (60), and 6 ones, 
for a total of 66. We check and note that 37 + 29 = 66, so we 
have done this addition correctly. Is it easier to just do it in 
base-ten? Probably, but that’s only because it’s more 
familiar to you. Your task here is to try to learn a new base 
system and how addition can be done in slightly different 
ways than what you have seen in the past. Note, however, 
that the concept of carrying is still used, just as it is in our 
own addition algorithm. 
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Try It Now 

Try adding 174 and 78 in Mayan by first converting to 
Mayan numbers and then working entirely within that 
system. Do not add in base-ten (decimal) until the very 
end when you check your work. 

Conclusion 

In this reading, we have briefly sketched the development of 
numbers and our counting system, with the emphasis on the “brief” 
part. There are numerous sources of information and research that 
fill many volumes of books on this topic. Unfortunately, we cannot 
begin to come close to covering all of the information that is out 
there. 

We have only scratched the surface of the wealth of research 
and information that exists on the development of numbers and 
counting throughout human history. What is important to note is 
that the system that we use every day is a product of thousands of 
years of progress and development. It represents contributions by 
many civilizations and cultures. It does not come down to us from 
the sky, a gift from the gods. It is not the creation of a textbook 
publisher. It is indeed as human as we are, as is the rest of 
mathematics. Behind every symbol, formula and rule there is a 
human face to be found, or at least sought. 

Furthermore, we hope that you now have a basic appreciation 
for just how interesting and diverse number systems can get. Also, 
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we’re pretty sure that you have also begun to recognize that we take 
our own number system for granted so much that when we try to 
adapt to other systems or bases, we find ourselves truly having to 
concentrate and think about what is going on. 
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7. Supplemental Videos 

This YouTube playlist contains 
several videos that supplement the reading on Historical Counting. 

You are not required to watch all of these videos, but I 
recommend watching the videos for any concepts you may be 
struggling with. 
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PART V 

MODULE 4: PROBABILITY 

Module 4: Probability  |  149





8. Calculating the Odds of an 
Event 

Here you’ll calculate odds by using outcomes or probability. Have 
you ever thought about the likelihood of an event happening? Take 
a look at this dilemma: 

Telly and 
Carey were already hard at work when Ms. Kelley came into the bike 
shop on Thursday morning. It was three days before the big race 
and there was still a lot of work to be done. 

“I can’t believe it!” Ms. Kelley exclaimed as she came into the shop. 
“What?” both girl asked alarmed. 
“There is a 4 to 5 chance that it is going to rain on Saturday. I just 

heard the weather report,” Ms. Kelley said sighing. 
“Well, there is still a chance that it won’t,” Telly said trying to cheer 

her up. 
When we think about chances and odds, we can calculate the 

likelihood that an event will or won’t occur. In this case, there are 
odds that it will rain and odds that it won’t. We can also express 
those odds as a fraction or a percentage. Learn about odds in this 
reading, and you can work on the odds of the rainstorm at the end. 
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Guidance 

You’ve seen that the probability of an event is defined as a ratio that 
compares the favorable out comes to the total outcomes. We can 
write this ratio in fraction form. 

Sometimes people express the likelihood of events in terms of 
odds rather than probabilities. The odds of an event occurring are 
equal to the ratio of favorable outcomes to unfavorable outcomes. 

Think about the odds for the arrow of the spinner above landing 
on red: 

• favorable outcomes = 1(red) 
• unfavorable outcomes = 2(blue, yellow) 
• total outcomes = 3 

So the probability of spinning red is: 
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While the odds in favor of red are: 

Odds against an event occurring are defined as: 

You can solve any probability problem in terms of odds rather 
than probabilities. Notice that the ratio represents what is being 
compared. Be sure that your numbers match the comparison. 

We can use odds to calculate how likely an event is to happen. We 
can compare the odds in favor of an event with the probability that 
the event will actually occur. Let’s look at an example. 

Take a look at this situation. 
You’ve seen that the odds in favor of an event (E) occurring are 

shown in this ratio. 

And the odds against the same event occurring are: 

You can use these two facts to compute the ratio of things 
happening and not happening. 

For 
example, suppose the weather forecast states: 

Odds in favor of rain: 7 to 3 
These odds tell you not only the odds of rain, but also the odds of 

not raining. 
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If the odds in favor or rain are 7 to 3, then the odds against rain 
are: 

Odds against rain: 3 to 7 
Another way of saying that is: 

Odds that it will NOT rain: 3 to 7 
You can use this idea in many different situations. If you know the 

odds that something will happen, then you also know the odds that 
it will not happen. 

Use this spinner to calculate odds. 

Example A 

Odds in favor of spinning a blue. 
Solution: 
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Example B 

Odds in favor of spinning a red or blue. 
Solution: 

Example C 

Odds against spinning a red or blue. 
Solution: 

Intro Problem Revisited 

Now let’s go back to the dilemma from the beginning of the reading. 
Answer all three questions. 
What are the chances that it won’t rain? We know that the odds 

of it raining is 4 to 5. Therefore it is a 1 out of 5 chance that it won’t 
rain. Not very good odds. 

What are the odds that it will as a percentage? 4 to 5 can be 
written as a percentage: 80% chance of rain. 

What are the odds that it won’t as a percentage? 1 to 5 can be 
written as a percentage: 20% chance that it won’t rain. 

Guided Practice 

Here is one for you to try on your own. 
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What are the odds in favor of a number cube landing on 
4? 

Step 1 

Find the favorable and unfavorable outcomes. 

• favorable outcomes = 1(4) 
• unfavorable outcomes = 5(1,2,3,5,6) 

Step 2 

Write the ratio of favorable to unfavorable outcomes. 

The odds in favor of rolling a 4 are 1 to 5. 

Vocabulary 

Disjoint events: events that don’t have any outcomes 
in common. 

Complementary events: probability that has a sum of 
100%. Either/Or events are complementary events. 
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Watch This: Video Review 

A YouTube element has been excluded from this 

version of the text. You can view it online here: 

https://library.achievingthedream.org/

hostosintrocollegemath/?p=29 

Practice Questions 

Solve the problems. 

1. For rolling a number cube, what are the odds in favor of rolling 
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a 2? 
2. For rolling a number cube, what are the odds against rolling a 

2? 
3. For rolling a number cube, what are the odds in favor of rolling 

a number greater than 3? 
4. For rolling a number cube, what are the odds in favor rolling a 

number less than 5? 
5. For rolling a number cube, what are the odds against rolling a 

number less than 5? 
6. For rolling a number cube, what are the odds in favor of rolling 

an even number? 
7. For rolling a number cube, what are the odds against rolling an 

even number? 

For a spinner numbered 1 –10, answer the following questions. 

1. For spinning the spinner, what are the odds in favor of the 
arrow landing on 10? 

2. For spinning the spinner, what are the odds in favor of the 
arrow landing on a 2 or 3? 

3. For spinning the spinner, what are the odds in favor of the 
arrow landing on 7, 8 or 9? 

4. For spinning the spinner, what are the odds in favor of NOT 
landing on an even number? 

5. For spinning the spinner, what are the odds of the arrow NOT 
landing on 10? 

6. For spinning the spinner, what are the odds in favor of the 
arrow landing on a number greater than 2? 

7. For spinning the spinner, what are the odds in favor of the 
arrow NOT landing on a number greater than 2? 

8. For spinning the spinner, what are the odds of the arrow not 
landing on a number greater than 3? 
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9. Probability Reading II 

We can use permutations and combinations to help us answer more 
complex probability questions 

Example 1 

A 4 digit PIN is selected. What is the probability that 
there are no repeated digits? 

There are 10 possible values for each digit of the PIN 
(namely: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), so there are 10 × 10 × 10 × 10 
= 104 = 10000 total possible PINs. 

To have no repeated digits, all four digits would have to 
be different, which is selecting without replacement. We 
could either compute 10 × 9 × 8 × 7, or notice that this is the 
same as the permutation 10P4 = 5040. 

The probability of no repeated digits is the number of 4 
digit PINs with no repeated digits divided by the total 
number of 4 digit PINs. This probability is 
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Example 2 

In a certain state’s lottery, 48 balls numbered 1 through 
48 are placed in a machine and six of them are drawn at 
random. If the six numbers drawn match the numbers that 
a player had chosen, the player wins $1,000,000. In this 
lottery, the order the numbers are drawn in doesn’t matter. 
Compute the probability that you win the million-dollar 
prize if you purchase a single lottery ticket. 

In order to compute the probability, we need to count the 
total number of ways six numbers can be drawn, and the 
number of ways the six numbers on the player’s ticket 
could match the six numbers drawn from the machine. 
Since there is no stipulation that the numbers be in any 
particular order, the number of possible outcomes of the 
lottery drawing is 48C6 = 12,271,512. Of these possible 
outcomes, only one would match all six numbers on the 
player’s ticket, so the probability of winning the grand prize 
is: 

Example 3 

In the state lottery from the previous example, if five of 
the six numbers drawn match the numbers that a player 
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has chosen, the player wins a second prize of $1,000. 
Compute the probability that you win the second prize if 
you purchase a single lottery ticket. 

As above, the number of possible outcomes of the lottery 
drawing is 48C6 = 12,271,512. In order to win the second 
prize, five of the six numbers on the ticket must match five 
of the six winning numbers; in other words, we must have 
chosen five of the six winning numbers and one of the 42 
losing numbers. The number of ways to choose 5 out of the 
6 winning numbers is given by 6C5 = 6 and the number of 
ways to choose 1 out of the 42 losing numbers is given by 
42C1 = 42. Thus the number of favorable outcomes is then 
given by the Basic Counting Rule: 6C5 × 42C1 = 6 × 42 = 252. 
So the probability of winning the second prize is 

Try it Now 

A multiple-choice question on an economics quiz 
contains 10 questions with five possible answers each. 
Compute the probability of randomly guessing the 
answers and getting 9 questions correct. 
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Example 4 

Compute the probability of randomly drawing five cards 
from a deck and getting exactly one Ace. 

In many card games (such as poker) the order in which 
the cards are drawn is not important (since the player may 
rearrange the cards in his hand any way he chooses); in the 
problems that follow, we will assume that this is the case 
unless otherwise stated. Thus we use combinations to 
compute the possible number of 5-card hands, 52C5. This 
number will go in the denominator of our probability 
formula, since it is the number of possible outcomes. 

For the numerator, we need the number of ways to draw 
one Ace and four other cards (none of them Aces) from the 
deck. Since there are four Aces and we want exactly one of 
them, there will be 4C1 ways to select one Ace; since there 
are 48 non-Aces and we want 4 of them, there will be 48C4 

ways to select the four non-Aces. Now we use the Basic 
Counting Rule to calculate that there will be 4C1 × 48C4 ways 
to choose one ace and four non-Aces. 

Putting this all together, we have 
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Example 5 

Compute the probability of randomly drawing five cards 
from a deck and getting exactly two Aces. 

The solution is similar to the previous example, except 
now we are choosing 2 Aces out of 4 and 3 non-Aces out of 
48; the denominator remains the same: 

It is useful to note that these card problems are remarkably similar 
to the lottery problems discussed earlier. 

Try it Now 

Compute the probability of randomly drawing five 
cards from a deck of cards and getting three Aces and 
two Kings. 
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Birthday Problem 

Let’s take a pause to consider a famous problem in probability 
theory: 

Suppose you have a room full of 30 people. What is the 
probability that there is at least one shared birthday? 

Take a guess at the answer to the above problem. Was your guess 
fairly low, like around 10%? That seems to be the intuitive answer 
(30/365, perhaps?). Let’s see if we should listen to our intuition. 
Let’s start with a simpler problem, however. 

Example 6 

Suppose three people are in a room. What is the 
probability that there is at least one shared birthday among 
these three people? 

There are a lot of ways there could be at least one shared 
birthday. Fortunately there is an easier way. We ask 
ourselves “What is the alternative to having at least one 
shared birthday?” In this case, the alternative is that there 
are no shared birthdays. In other words, the alternative to 
“at least one” is having none. In other words, since this is a 
complementary event, 

P(at least one) = 1 – P(none) 

We will start, then, by computing the probability that 
there is no shared birthday. Let’s imagine that you are one 
of these three people. Your birthday can be anything 
without conflict, so there are 365 choices out of 365 for 
your birthday. What is the probability that the second 
person does not share your birthday? There are 365 days in 
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the year (let’s ignore leap years) and removing your 
birthday from contention, there are 364 choices that will 
guarantee that you do not share a birthday with this 
person, so the probability that the second person does not 
share your birthday is 364/365. Now we move to the third 
person. What is the probability that this third person does 
not have the same birthday as either you or the second 
person? There are 363 days that will not duplicate your 
birthday or the second person’s, so the probability that the 
third person does not share a birthday with the first two is 
363/365. 

We want the second person not to share a birthday with 
you and the third person not to share a birthday with the 
first two people, so we use the multiplication rule: 

and then subtract from 1 to get 

P(shared birthday) = 1 – P(no shared birthday) = 1 – 0.9918 
= 0.0082. 

This is a pretty small number, so maybe it makes sense that the 
answer to our original problem will be small. Let’s make our group a 
bit bigger. 

Example 7 

Suppose five people are in a room. What is the 
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probability that there is at least one shared birthday among 
these five people? 

Continuing the pattern of the previous example, the 
answer should be 

Note that we could rewrite this more compactly as 

which makes it a bit easier to type into a calculator or 
computer, and which suggests a nice formula as we 
continue to expand the population of our group. 

Example 8 

Suppose 30 people are in a room. What is the probability 
that there is at least one shared birthday among these 30 
people? 

Here we can calculate 

which gives us the surprising result that when you are in 
a room with 30 people there is a 70% chance that there will 
be at least one shared birthday! 

If you like to bet, and if you can convince 30 people to reveal their 
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birthdays, you might be able to win some money by betting a friend 
that there will be at least two people with the same birthday in the 
room anytime you are in a room of 30 or more people. (Of course, 
you would need to make sure your friend hasn’t studied probability!) 
You wouldn’t be guaranteed to win, but you should win more than 
half the time. 

This is one of many results in probability theory that is 
counterintuitive; that is, it goes against our gut instincts. If you 
still don’t believe the math, you can carry out a simulation. Just 
so you won’t have to go around rounding up groups of 30 people, 
someone has kindly developed a Java applet so that you can conduct 
a computer simulation. Go to this web page, and once the applet has 
loaded, select 30 birthdays and then keep clicking Start and Reset. 
If you keep track of the number of times that there is a repeated 
birthday, you should get a repeated birthday about 7 out of every 10 
times you run the simulation. 

Try it Now 

Suppose 10 people are in a room. What is the 
probability that there is at least one shared birthday 
among these 10 people? 
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Expected Value 

Expected value is 
perhaps the most useful probability concept we will discuss. It has 
many applications, from insurance policies to making financial 
decisions, and it’s one thing that the casinos and government 
agencies that run gambling operations and lotteries hope most 
people never learn about. 

Example 9 

In the casino game roulette, a wheel with 38 spaces (18 
red, 18 black, and 2 green) is spun. In one possible bet, the 
player bets $1 on a single number. If that number is spun on 
the wheel, then they receive $36 (their original $1 + $35). 
Otherwise, they lose their $1. On average, how much money 
should a player expect to win or lose if they play this game 
repeatedly? 

Suppose you bet $1 on each of the 38 spaces on the 
wheel, for a total of $38 bet. When the winning number is 
spun, you are paid $36 on that number. While you won on 
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that one number, overall you’ve lost $2. On a per-space 
basis, you have “won”—$2/$38 ≈ –$0.053. In other words, 
on average you lose 5.3 cents per space you bet on. 

We call this average gain or loss the expected value of playing 
roulette. Notice that no one ever loses exactly 5.3 cents: most 
people (in fact, about 37 out of every 38) lose $1 and a very few 
people (about 1 person out of every 38) gain $35 (the $36 they win 
minus the $1 they spent to play the game). 

There is another way to compute expected value without 
imagining what would happen if we play every possible space. There 
are 38 possible outcomes when the wheel spins, so the probability 

of winning is . The complement, the probability of losing, is 

. 

Summarizing these along with the values, we get this table: 

Outcome Probability of outcome 

$35 

–$1 

Notice that if we multiply each outcome by its corresponding 

probability we get $35 ×  = 0.9211 and –$1 ×  = –0.9737, and 

if we add these numbers we get 0.9211 + (–0.9737) ≈ –0.053, which is 
the expected value we computed above. 
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Expected Value 

Expected Value is the average gain or loss of an event 
if the procedure is repeated many times. 

We can compute the expected value by multiplying 
each outcome by the probability of that outcome, then 
adding up the products. 

Try it Now 

You purchase a raffle ticket to help out a charity. The 
raffle ticket costs $5. The charity is selling 2000 tickets. 
One of them will be drawn and the person holding the 
ticket will be given a prize worth $4000. Compute the 
expected value for this raffle. 

Example 10 

In a certain state’s lottery, 48 balls numbered 1 through 
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48 are placed in a machine and six of them are drawn at 
random. If the six numbers drawn match the numbers that 
a player had chosen, the player wins $1,000,000. If they 
match 5 numbers, then win $1,000. It costs $1 to buy a 
ticket. Find the expected value. 

Earlier, we calculated the probability of matching all 6 
numbers and the probability of matching 5 numbers: 

 for all 

6 numbers, 

 for 5 numbers. 

Our probabilities and outcome values are: 

Outcome Probability of outcome 

$999,999 

$999 

–$1 

The expected value, then is: 

On average, one can expect to lose about 90 cents on a 
lottery ticket. Of course, most players will lose $1. 
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In general, if the expected value of a game is negative, it is not a 
good idea to play the game, since on average you will lose money. 
It would be better to play a game with a positive expected value 
(good luck trying to find one!), although keep in mind that even 
if the average winnings are positive it could be the case that most 
people lose money and one very fortunate individual wins a great 
deal of money. If the expected value of a game is 0, we call it a fair 
game, since neither side has an advantage. 

Not surprisingly, the expected value for casino games is negative 
for the player, which is positive for the casino. It must be positive or 
they would go out of business. Players just need to keep in mind that 
when they play a game repeatedly, their expected value is negative. 
That is fine so long as you enjoy playing the game and think it is 
worth the cost. But it would be wrong to expect to come out ahead. 

Try it Now 

A friend offers to play a game, in which you roll 3 
standard 6-sided dice. If all the dice roll different values, 
you give him $1. If any two dice match values, you get $2. 
What is the expected value of this game? Would you 
play? 

Expected value also has applications outside of gambling. Expected 
value is very common in making insurance decisions. 
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Example 11 

According to the estimator at numericalexample.com, a 
40-year-old man in the US has a 0.242% risk of dying 
during the next year. An insurance company charges $275 
for a life-insurance policy that pays a $100,000 death 
benefit. What is the expected value for the person buying 
the insurance? 

The probabilities and outcomes are 

Outcome Probability of outcome 

$100,000 – $275 = $99,725 0.00242 

–$275 1 – 0.00242 = 0.99758 

The expected value is ($99,725)(0.00242) + 
(–$275)(0.99758) = –$33. 

Not surprisingly, the expected value is negative; the insurance 
company can only afford to offer policies if they, on average, make 
money on each policy. They can afford to pay out the occasional 
benefit because they offer enough policies that those benefit 
payouts are balanced by the rest of the insured people. 

For people buying the insurance, there is a negative expected 
value, but there is a security that comes from insurance that is 
worth that cost. 
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10. Probability Reading I 

Introduction 

The probability of a specified event is the chance or likelihood that 
it will occur. There are several ways of viewing probability. One 
would be experimental in nature, where we repeatedly conduct an 
experiment. Suppose we flipped a coin over and over and over again 
and it came up heads about half of the time; we would expect that 
in the future whenever we flipped the coin it would turn up heads 
about half of the time. When a weather reporter says “there is a 10% 
chance of rain tomorrow,” she is basing that on prior evidence; that 
out of all days with similar weather patterns, it has rained on 1 out 
of 10 of those days. 

Another view would be subjective in nature, in other words an 
educated guess. If someone asked you the probability that the 
Seattle Mariners would win their next baseball game, it would be 
impossible to conduct an experiment where the same two teams 
played each other repeatedly, each time with the same starting 
lineup and starting pitchers, each starting at the same time of day 
on the same field under the precisely the same conditions. Since 
there are so many variables to take into account, someone familiar 
with baseball and with the two teams involved might make an 
educated guess that there is a 75% chance they will win the game; 
that is, if the same two teams were to play each other repeatedly 
under identical conditions, the Mariners would win about three out 
of every four games. But this is just a guess, with no way to verify its 
accuracy, and depending upon how educated the educated guesser 
is, a subjective probability may not be worth very much. 

We will return to the experimental and subjective probabilities 
from time to time, but in this course we will mostly be concerned 
with theoretical probability, which is defined as follows: Suppose 
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there is a situation with n equally likely possible outcomes and 
that m of those n outcomes correspond to a particular event; then 

the probability of that event is defined as . 

Basic Concepts 

If you roll a die, pick a card from deck of playing cards, or randomly 
select a person and observe their hair color, we are executing an 
experiment or procedure. In probability, we look at the likelihood of 
different outcomes. We begin with some terminology. 

Events and Outcomes 

The result of an experiment is called an outcome. 

An event is any particular outcome or group of 
outcomes. 

A simple event is an event that cannot be broken 
down further 

The sample space is the set of all possible simple 
events. 
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Example 1 

If we roll a standard 6-sided die, describe the sample 
space and some simple events. 

Solution 

The sample space is the set of all possible simple events: 
{1,2,3,4,5,6} 

Some examples of simple events: 

• We roll a 1 
• We roll a 5 

Some compound events: 

• We roll a number bigger than 4 
• We roll an even number 
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Basic Probability 

Given that all outcomes are equally likely, we can 
compute the probability of an event E using this 
formula: 

Example 2 

If we roll a 6-sided die, calculate 

1. P(rolling a 1) 
2. P(rolling a number bigger than 4) 

Solution 

Recall that the sample space is {1,2,3,4,5,6} 

1. There is one outcome corresponding to “rolling a 1,” 

so the probability is 

2. There are two outcomes bigger than a 4, so the 

Probability Reading I  |  177



probability is 

Probabilities are essentially fractions, and can be reduced to lower 
terms like fractions. 

Example 3 

Let’s say you have a bag with 20 cherries, 14 sweet and 6 
sour. If you pick a cherry at random, what is the probability 
that it will be sweet? 

Solution 

There are 20 possible cherries that could be picked, so 
the number of possible outcomes is 20. Of these 20 
possible outcomes, 14 are favorable (sweet), so the 

probability that the cherry will be sweet is . 

There is one potential complication to this example, however. It 
must be assumed that the probability of picking any of the cherries 
is the same as the probability of picking any other. This wouldn’t be 
true if (let us imagine) the sweet cherries are smaller than the sour 
ones. (The sour cherries would come to hand more readily when you 
sampled from the bag.) Let us keep in mind, therefore, that when we 
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assess probabilities in terms of the ratio of favorable to all potential 
cases, we rely heavily on the assumption of equal probability for all 
outcomes. 

Try it Now 

At some random moment, you look at your clock and 
note the minutes reading. 

1. What is probability the minutes reading is 15? 
2. What is the probability the minutes reading is 15 

or less? 

Cards 

A standard deck of 52 playing cards consists of 
four suits (hearts, spades, diamonds and clubs). Spades 
and clubs are black while hearts and diamonds are red. 
Each suit contains 13 cards, each of a different rank: an 
Ace (which in many games functions as both a low card 
and a high card), cards numbered 2 through 10, a Jack, a 
Queen and a King. 
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Example 4 

Compute the probability of randomly drawing one card 
from a deck and getting an Ace. 

Solution 

There are 52 cards in the deck and 4 Aces so 

We can also think of probabilities as percents: There is a 
7.69% chance that a randomly selected card will be an Ace. 

Notice that the smallest possible probability is 0—if there are no 
outcomes that correspond with the event. The largest possible 
probability is 1—if all possible outcomes correspond with the event. 

Certain and Impossible Events 

An impossible event has a probability of 0. 

A certain event has a probability of 1. 
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The probability of any event must be 

In the course of this chapter, if you compute a probability and get an 
answer that is negative or greater than 1, you have made a mistake 
and should check your work. 

Working with Events 

Complementary Events 

Now let us examine the probability that an event does not happen. 
As in the previous section, consider the situation of rolling a six-
sided die and first compute the probability of rolling a six: the 

answer is P(six) = . Now consider the probability that we 

do not roll a six: there are 5 outcomes that are not a six, so the 

answer is P(not a six) = . Notice that 

This is not a coincidence. Consider a generic situation 
with n possible outcomes and an event E that corresponds to m of 
these outcomes. Then the remaining n – m outcomes correspond 
to E not happening, thus 
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Complement of an Event 

The complement of an event is the event “E doesn’t 
happen” 

The notation  is used for the complement of 
event E. 

We can compute the probability of the complement 
using 

Notice also that 

Example 5 

If you pull a random card from a deck of playing cards, 
what is the probability it is not a heart? 

Solution 

There are 13 hearts in the deck, so 

. 

The probability of not drawing a heart is the complement: 
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Probability of Two Independent Events 

Example 6 

Suppose we flipped a coin and rolled a die, and wanted to 
know the probability of getting a head on the coin and a 6 
on the die. 

Solution 

We could list all possible outcomes: 
{H1,H2,H3,H4,H5,H6,T1,T2,T3,T4,T5,T6}. 

Notice there are 2 · 6 = 12 total outcomes. Out of these, 

only 1 is the desired outcome, so the probability is . 

The prior example was looking at two independent events. 
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Independent Events 

Events A and B are independent events if the 
probability of Event B occurring is the same whether or 
not Event A occurs. 

Example 7 

Are these events independent? 

1. A fair coin is tossed two times. The two events are 
(1) first toss is a head and (2) second toss is a head. 

2. The two events (1) “It will rain tomorrow in 
Houston” and (2) “It will rain tomorrow in Galveston” 
(a city near Houston). 

3. You draw a card from a deck, then draw a second 
card without replacing the first. 

Solution 

1. The probability that a head comes up on the second 
toss is 1/2 regardless of whether or not a head came 
up on the first toss, so these events are independent. 

2. These events are not independent because it is 
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more likely that it will rain in Galveston on days it 
rains in Houston than on days it does not. 

3. The probability of the second card being red 
depends on whether the first card is red or not, so 
these events are not independent. 

When two events are independent, the probability of both occurring 
is the product of the probabilities of the individual events. 

P(A and B) for Independent Events 

If events A and B are independent, then the 
probability of both A and B occurring is 

P(A and B) = P(A) · P(B) 

where P(A and B) is the probability of 
events A and B both occurring, P(A) is the probability of 
event A occurring, and P(B) is the probability of 
event B occurring 

If you look back at the coin and die example from earlier, you can 
see how the number of outcomes of the first event multiplied by 
the number of outcomes in the second event multiplied to equal the 
total number of possible outcomes in the combined event. 
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Example 8 

In your drawer you have 10 pairs of socks, 6 of which are 
white, and 7 tee shirts, 3 of which are white. If you 
randomly reach in and pull out a pair of socks and a tee 
shirt, what is the probability both are white? 

Solution 

The probability of choosing a white pair of socks is . 

The probability of choosing a white tee shirt is . 

The probability of both being white is 

. 

Try it Now 

A card is pulled a deck of cards and noted. The card is 
then replaced, the deck is shuffled, and a second card is 
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removed and noted. What is the probability that both 
cards are Aces? 

The previous examples looked at the probability of both events 
occurring. Now we will look at the probability of either event 
occurring. 

Example 9 

Suppose we flipped a coin and rolled a die, and wanted to 
know the probability of getting a head on the coin or a 6 on 
the die. 

Solution 

Here, there are still 12 possible outcomes: 
{H1,H2,H3,H4,H5,H6,T1,T2,T3,T4,T5,T6} 

By simply counting, we can see that 7 of the outcomes 
have a head on the coin or a 6 on the die or both—we 
use or inclusively here (these 7 outcomes are H1, H2, H3, 

H4, H5, H6, T6), so the probability is . How could we 

have found this from the individual probabilities? 

As we would expect,  of these outcomes have a head, 
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and  of these outcomes have a 6 on the die. If we add 

these, , which is not 

the correct probability. Looking at the outcomes we can see 
why: the outcome H6 would have been counted twice, 
since it contains both a head and a 6; the probability of 

both a head and rolling a 6 is . 

If we subtract out this double count, we have the correct 

probability: . 

P(A or B) 

The probability of either A or B occurring (or both) is 

P(A or B) = P(A) + P(B) – P(A and B) 
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Example 10 

Suppose we draw one card from a standard deck. What is 
the probability that we get a Queen or a King? 

There are 4 Queens and 4 Kings in the deck, hence 8 
outcomes corresponding to a Queen or King out of 52 
possible outcomes. Thus the probability of drawing a 
Queen or a King is: 

Note that in this case, there are no cards that are both a 
Queen and a King, so . 

Using our probability rule, we could have said: 

In the last example, the events were mutually exclusive, so P(A or B) 
= P(A) + P(B). 

Example 11 

Suppose we draw one card from a standard deck. What is 
the probability that we get a red card or a King? 

Half the cards are red, so 
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There are four kings, so 

There are two red kings, so 

We can then calculate 

Try it Now 

In your drawer you have 10 pairs of socks, 6 of which 
are white, and 7 tee shirts, 3 of which are white. If you 
reach in and randomly grab a pair of socks and a tee 
shirt, what the probability at least one is white? 

Example 12 

The table below shows the number of survey subjects 
who have received and not received a speeding ticket in the 
last year, and the color of their car. Find the probability that 
a randomly chosen person: 
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1. Has a red car and got a speeding ticket 
2. Has a red car or got a speeding ticket. 

Solution 

Speeding 
Ticket 

No Speeding 
Ticket 

Tota
l 

Red car 15 135 150 

Not red 
car 45 470 515 

Total 60 605 665 

We can see that 15 people of the 665 surveyed had both a 
red car and got a speeding ticket, so the probability is 

. 

Notice that having a red car and getting a speeding ticket 
are not independent events, so the probability of both of 
them occurring is not simply the product of probabilities of 
each one occurring. 

We could answer this question by simply adding up the 
numbers: 15 people with red cars and speeding tickets + 135 
with red cars but no ticket + 45 with a ticket but no red car 

= 195 people. So the probability is . 

We also could have found this probability by: P(had a red 
car) + P(got a speeding ticket) – P(had a red car and got a 

speeding ticket) = . 
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Conditional Probability 

Often it is required to compute the probability of an event given that 
another event has occurred. 

Example 13 

What is the probability that two cards drawn at random 
from a deck of playing cards will both be aces? 

It might seem that you could use the formula for the 
probability of two independent events and simply multiply 

. This would be incorrect, however, 

because the two events are not independent. If the first 
card drawn is an ace, then the probability that the second 
card is also an ace would be lower because there would 
only be three aces left in the deck. 

Once the first card chosen is an ace, the probability that 
the second card chosen is also an ace is called 
the conditional probability of drawing an ace. In this case 
the “condition” is that the first card is an ace. Symbolically, 
we write this as: P(ace on second draw | an ace on the first 
draw). 

The vertical bar “|” is read as “given,” so the above 
expression is short for “The probability that an ace is drawn 
on the second draw given that an ace was drawn on the 
first draw.” What is this probability? After an ace is drawn 
on the first draw, there are 3 aces out of 51 total cards left. 
This means that the conditional probability of drawing an 
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ace after one ace has already been drawn is . 

Thus, the probability of both cards being aces is 

. 

Conditional Probability 

The probability the event B occurs, given that 
event A has happened, is represented as 

P(B | A) 

This is read as “the probability of B given A” 

Example 14 

Find the probability that a die rolled shows a 6, given that 
a flipped coin shows a head. 

These are two independent events, so the probability of 
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the die rolling a 6 is , regardless of the result of the coin 

flip. 

Example 15 

The table below shows the number of survey subjects 
who have received and not received a speeding ticket in the 
last year, and the color of their car. Find the probability that 
a randomly chosen person: 

1. Has a speeding ticket given they have a red car 
2. Has a red car given they have a speeding ticket 

Solution 

Speeding 
Ticket 

No Speeding 
Ticket 

Tota
l 

Red car 15 135 150 

Not red 
car 45 470 515 

Total 60 605 665 

1. Since we know the person has a red car, we are 
only considering the 150 people in the first row of the 
table. Of those, 15 have a speeding ticket, so 
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2. Since we know the person has a speeding ticket, we 
are only considering the 60 people in the first column 
of the table. Of those, 15 have a red car, so 

Notice from the last example that P(B | A) is not equal to P(A | B). 
These kinds of conditional probabilities are what insurance 

companies use to determine your insurance rates. They look at the 
conditional probability of you having accident, given your age, your 
car, your car color, your driving history, etc., and price your policy 
based on that likelihood. 

Conditional Probability Formula 

If Events A and B are not independent, then 

P(A and B) = P(A) · P(B | A) 
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Example 16 

If you pull 2 cards out of a deck, what is the probability 
that both are spades? 

Solution 

The probability that the first card is a spade is . 

The probability that the second card is a spade, given the 

first was a spade, is , since there is one less spade in 

the deck, and one less total cards. 

The probability that both cards are spades is 

Example 17 

If you draw two cards from a deck, what is the probability 
that you will get the Ace of Diamonds and a black card? 
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Solution 

You can satisfy this condition by having Case A or Case B, 
as follows: 

• Case A: you can get the Ace of Diamonds first and 
then a black card or 

• Case B: you can get a black card first and then the 
Ace of Diamonds. 

Let’s calculate the probability of Case A. The probability 

that the first card is the Ace of Diamonds is . The 

probability that the second card is black given that the first 

card is the Ace of Diamonds is  because 26 of the 

remaining 51 cards are black. The probability is therefore 

. 

Now for Case B: the probability that the first card is black 

is . The probability that the second card is the 

Ace of Diamonds given that the first card is black is . 

The probability of Case B is therefore , 

the same as the probability of Case 1. 

Recall that the probability of A or B is P(A) + P(B) – P(A and 
B). In this problem, P(A and B) = 0 since the first card 
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cannot be the Ace of Diamonds and be a black card. 
Therefore, the probability of Case A or Case B is 

. The probability that you will 

get the Ace of Diamonds and a black card when drawing 

two cards from a deck is . 

Try it Now 

In your drawer you have 10 pairs of socks, 6 of which 
are white. If you reach in and randomly grab two pairs 
of socks, what is the probability that both are white? 

Example 18 

A home pregnancy test was given to women, then 
pregnancy was verified through blood tests. The following 
table shows the home pregnancy test results. Find 

1. P(not pregnant | positive test result) 
2. P(positive test result | not pregnant) 
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Solution 

Positive Test Negative Test Total 

Pregnant 70 4 74 

Not Pregnant 5 14 19 

Total 75 18 93 

1. Since we know the test result was positive, we’re 
limited to the 75 women in the first column, of which 
5 were not pregnant. P(not pregnant | positive test 

result) = . 

2. Since we know the woman is not pregnant, we are 
limited to the 19 women in the second row, of which 5 
had a positive test. P(positive test result | not 

pregnant) = . 

The second result is what is usually called a false positive: 
A positive result when the woman is not actually pregnant. 
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PART VI 

MODULE 5: MODULAR 
ARITHMETIC 
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11. Modular Arithmetic 
Readings 

For this first reading, you will need to access several external 
webpages provided by Khan Academy. Once you have completed 
all of the readings and practices, click the Next button below to 
continue the reading for Unit 1. 

• What is Modular Arithmetic? 
• Practice—Using the Modulo Operator 
• Congruence Modulo 
• Congruence Relation Practice 
• Equivalence Relations 
• The Quotient Remainder Theorem 
• Modular Addition and Subtraction 
• Practice—Modular Addition 
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12. Modular Arithmetic 

Introduction to modular arithmetic using clocks and telling the 
time. 

A YouTube element has been excluded from this version of the 

text. You can view it online here: 

https://library.achievingthedream.org/

hostosintrocollegemath/?p=34 
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13. Calculator Shortcut for 
Modular Arithmetic 

Modular arithmetic 

If you think back to doing division with whole numbers, you may 
remember finding the whole number result and the remainder after 
division. 

Modulus 

The modulus1 is another name for the remainder after 
division. 

For example, 17 mod 5 = 2, since if we divide 17 by 5, 
we get 3 with remainder 2. 

Modular arithmetic is sometimes called clock arithmetic, since 
analog clocks wrap around times past 12, meaning they work on 

1. Sometimes, instead of seeing 17 mod 5 = 2, you’ll see 17 ≡ 
2 (mod 5). The ≡ symbol means “congruent to” and 
means that 17 and 2 are equivalent, after you consider 
the modulus 5. 

Calculator Shortcut for Modular
Arithmetic  |  205



a modulus of 12. If the hour hand of a clock currently points to 
8, then in 5 hours it will point to 1. While 8 + 5 = 13, the clock 
wraps around after 12, so all times can be thought of as modulus 12. 
Mathematically, 13 mod 12 = 1. 

Example 1 

Compute the following: 

1. 10 mod 3 
2. 15 mod 5 
3. 27 mod 5 

Answers 

1. Since 10 divided by 3 is 3 with remainder 1, 10 mod 
3 = 1 

2. Since 15 divided by 5 is 3 with no remainder, 15 mod 
5 = 0 

3. 27 = 128. 128 divide by 5 is 25 with remainder 3, so 27 

mod 5 = 3 
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Try it Now 

Compute the following: 

1. 23 mod 7 
2. 15 mod 7 
3. 2034 mod 7 

Recall that when we divide 17 by 5, we could represent the result 
as 3 remainder 2, as the mixed number 

, or as the decimal 3.4. Notice that the modulus, 2, is the same 
as the numerator of the fractional part of the mixed number, and 
that the decimal part 0.4 is equivalent to the fraction 

. We can use these conversions to calculate the modulus of not-too-
huge numbers on a standard calculator. 

Modulus on a Standard Calculator 

To calculate a mod n on a standard calculator 

1. Divide a by n 
2. Subtract the whole part of the resulting quantity 
3. Multiply by n to obtain the modulus 
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Example 2 

Calculate 31345 mod 419. 

Answer 

Now subtract 
74 to get just 
the decimal 
remainder 

Multiply this 
by 419 to get 
the modulus 

This tells us 
0.8090692 was 
equivalent to 

In the text above, only a portion of the decimal value was 
written down. In practice, you should try to avoid writing 
down the intermediary steps, and instead allow your 
calculator to retain as many decimal values as it can. 

208  |  Calculator Shortcut for Modular Arithmetic



PART VII 

MODULE 6: MEASUREMENT 
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14. Measurement 

https://nrocnetwork.org/resources/courses/nroc-math/nroc-
math-standard/ 

Module 6 contains Measurement assessments 
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