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1. Set Theory

It is natural for us to classify items into groups, or sets, and consider
how those sets overlap with each other. We can use these sets
understand relationships between groups, and to analyze survey
data.

Basics

An art collector might own a collection of paintings, while a music
lover might keep a collection of CDs. Any collection of items can
form a set.

Set

A set is a collection of distinct objects, called
elements of the set

A set can be defined by describing the contents, or by
listing the elements of the set, enclosed in curly
brackets.
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Example 1

Some examples of sets defined by describing the
contents:

1. The set of all even numbers
2. The set of all books written about travel to Chile

Answers

Some examples of sets defined by listing the elements of
the set:

1. {1, 3, 9, 12}
2. {red, orange, yellow, green, blue, indigo, purple}

A set simply specifies the contents; order is not important. The set
represented by {1, 2, 3} is equivalent to the set {3, 1, 2}.

Notation

Commonly, we will use a variable to represent a set, to
make it easier to refer to that set later.

The symbol ∈ means “is an element of”.
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A set that contains no elements, { }, is called the
empty set and is notated ∅

Example 2

Let A = {1, 2, 3, 4}

To notate that 2 is element of the set, we’d write 2 ∈ A

Sometimes a collection might not contain all the elements of a
set. For example, Chris owns three Madonna albums. While Chris’s
collection is a set, we can also say it is a subset of the larger set of
all Madonna albums.

Subset

A subset of a set A is another set that contains only
elements from the set A, but may not contain all the
elements of A.

If B is a subset of A, we write B ⊆ A

A proper subset is a subset that is not identical to the
original set—it contains fewer elements.
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If B is a proper subset of A, we write B ⊂ A

Example 3

Consider these three sets:

A = the set of all even numbers
B = {2, 4, 6}
C = {2, 3, 4, 6}

Here B ⊂ A since every element of B is also an even

number, so is an element of A.

More formally, we could say B ⊂ A since if x ∈ B, then x ∈

A.

It is also true that B ⊂ C.

C is not a subset of A, since C contains an element, 3, that
is not contained in A

Example 4

Suppose a set contains the plays “Much Ado About
Nothing,” “MacBeth,” and “A Midsummer’s Night Dream.”
What is a larger set this might be a subset of?
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There are many possible answers here. One would be the
set of plays by Shakespeare. This is also a subset of the set
of all plays ever written. It is also a subset of all British
literature.

Try It Now

The set A = {1, 3, 5}. What is a larger set this might be a
subset of?

Union, Intersection, and Complement

Commonly sets interact. For example, you and a new roommate
decide to have a house party, and you both invite your circle of
friends. At this party, two sets are being combined, though it might
turn out that there are some friends that were in both sets.
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Union, Intersection, and Complement

The union of two sets contains all the elements
contained in either set (or both sets). The union is
notated A ⋃ B. More formally, x ∊ A ⋃ B if x ∈ A or x ∈ B

(or both)

The intersection of two sets contains only the
elements that are in both sets. The intersection is
notated A ⋂ B. More formally, x ∈ A ⋂ B if x ∈ A and x ∈ B.

The complement of a set A contains everything that is
not in the set A. The complement is notated A’, or Ac, or
sometimes ~A.

Example 5

Consider the sets:

A = {red, green, blue}
B = {red, yellow, orange}
C = {red, orange, yellow, green, blue, purple}

Find the following:

1. Find A ⋃ B
2. Find A ⋂ B
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3. Find Ac⋂ C

Answers

1. The union contains all the elements in either set: A
⋃ B = {red, green, blue, yellow, orange} Notice we only
list red once.

2. The intersection contains all the elements in both
sets: A ⋂ B = {red}

3. Here we’re looking for all the elements that are not
in set A and are also in C. Ac ⋂ C = {orange, yellow,
purple}

Try It Now

Using the sets from the previous example, find A ⋃ C
and Bc ⋂ A

Notice that in the example above, it would be hard to just ask for
Ac, since everything from the color fuchsia to puppies and peanut
butter are included in the complement of the set. For this reason,
complements are usually only used with intersections, or when we
have a universal set in place.
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Universal Set

A universal set is a set that contains all the elements
we are interested in. This would have to be defined by
the context.

A complement is relative to the universal set,
so Ac contains all the elements in the universal set that
are not in A.

Example 6

1. If we were discussing searching for books, the
universal set might be all the books in the library.

2. If we were grouping your Facebook friends, the
universal set would be all your Facebook friends.

3. If you were working with sets of numbers, the
universal set might be all whole numbers, all integers,
or all real numbers
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Example 7

Suppose the universal set is U = all whole numbers from 1
to 9. If A = {1, 2, 4}, then Ac = {3, 5, 6, 7, 8, 9}.

As we saw earlier with the expression Ac ⋂ C, set operations can be
grouped together. Grouping symbols can be used like they are with
arithmetic – to force an order of operations.

Example 8

Suppose H = {cat, dog, rabbit, mouse}, F = {dog, cow, duck,
pig, rabbit}, and W = {duck, rabbit, deer, frog, mouse}

1. Find (H ⋂ F) ⋃W
2. Find H ⋂ (F ⋃W)
3. Find (H ⋂ F)c ⋂W

Solutions

1. We start with the intersection: H ⋂ F = {dog,
rabbit}. Now we union that result with W: (H ⋂ F) ⋃W
= {dog, duck, rabbit, deer, frog, mouse}

2. We start with the union: F ⋃W = {dog, cow, rabbit,
duck, pig, deer, frog, mouse}. Now we intersect that
result with H: H ⋂ (F ⋃W) = {dog, rabbit, mouse}
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3. We start with the intersection: H ⋂ F = {dog,
rabbit}. Now we want to find the elements of W that
are not in H ⋂ F. (H ⋂ F)c ⋂W = {duck, deer, frog,
mouse}

Venn Diagrams

To visualize the interaction of sets, John Venn in 1880 thought to
use overlapping circles, building on a similar idea used by Leonhard
Euler in the eighteenth century. These illustrations now called Venn
Diagrams.

Venn Diagram

A Venn diagram represents each set by a circle,
usually drawn inside of a containing box representing
the universal set. Overlapping areas indicate elements
common to both sets.

Basic Venn diagrams can illustrate the interaction of two or three
sets.
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Example 9

Create Venn diagrams to illustrate A ⋃ B, A ⋂ B, and Ac ⋂ B

A ⋃ B contains all elements in either set.

A ⋂ B contains only those elements in both sets—in the
overlap of the circles.
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Ac will contain all elements not in the set A. Ac ⋂ B will
contain the elements in set B that are not in set A.

Example 10

Use a Venn diagram to illustrate (H ⋂ F)c ⋂W

We’ll start by identifying everything in the set H ⋂ F
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Now, (H ⋂ F)c ⋂W will contain everything not in the set
identified above that is also in set W.
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Example 11

Create an expression to represent the outlined part of
the Venn diagram shown.

The elements in the outlined set are in sets H and F, but
are not in set W. So we could represent this set as H ⋂ F ⋂
Wc
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Try It Now

Create an expression to represent the outlined
portion of the Venn diagram shown

Cardinality

Often times we are interested in the number of items in a set or
subset. This is called the cardinality of the set.
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Cardinality

The number of elements in a set is the cardinality of
that set.

The cardinality of the set A is often notated as |A| or
n(A)

Example 12

Let A = {1, 2, 3, 4, 5, 6} and B = {2, 4, 6, 8}.

What is the cardinality of B? A ⋃ B, A ⋂ B?

Answers

The cardinality of B is 4, since there are 4 elements in the
set.

The cardinality of A ⋃ B is 7, since A ⋃ B = {1, 2, 3, 4, 5, 6, 8},
which contains 7 elements.

The cardinality of A ⋂ B is 3, since A ⋂ B = {2, 4, 6}, which
contains 3 elements.
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Example 13

What is the cardinality of P = the set of English names for
the months of the year?

Answers

The cardinality of this set is 12, since there are 12 months
in the year.

Sometimes we may be interested in the cardinality of the union or
intersection of sets, but not know the actual elements of each set.
This is common in surveying.

Example 14

A survey asks 200 people “What beverage do you drink in
the morning”, and offers choices:

• Tea only
• Coffee only
• Both coffee and tea

Suppose 20 report tea only, 80 report coffee only, 40
report both. How many people drink tea in the morning?
How many people drink neither tea or coffee?
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Answers

This
question can most easily be answered by creating a Venn
diagram. We can see that we can find the people who drink
tea by adding those who drink only tea to those who drink
both: 60 people.

We can also see that those who drink neither are those
not contained in the any of the three other groupings, so
we can count those by subtracting from the cardinality of
the universal set, 200.

200 – 20 – 80 – 40 = 60 people who drink neither.

Example 15

A survey asks: “Which online services have you used in
the last month?”

26 | Set Theory



• Twitter
• Facebook
• Have used both

The results show 40% of those surveyed have used
Twitter, 70% have used Facebook, and 20% have used both.
How many people have used neither Twitter or Facebook?

Answers

Let T be the set of all people who have used Twitter, and
F be the set of all people who have used Facebook. Notice
that while the cardinality of F is 70% and the cardinality of
T is 40%, the cardinality of F ⋃ T is not simply 70% + 40%,
since that would count those who use both services twice.
To find the cardinality of F ⋃ T, we can add the cardinality
of F and the cardinality of T, then subtract those in
intersection that we’ve counted twice. In symbols,

n(F ⋃ T) = n(F) + n(T) – n(F ⋂ T)
n(F ⋃ T) = 70% + 40% – 20% = 90%

Now, to find how many people have not used either
service, we’re looking for the cardinality of (F ⋃ T)c . Since
the universal set contains 100% of people and the
cardinality of F ⋃ T = 90%, the cardinality of (F ⋃ T)c must be
the other 10%.

The previous example illustrated two important properties
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Cardinality properties

n(A ⋃ B) = n(A) + n(B) – n(A ⋂ B)

n(Ac) = n(U) – n(A)

Notice that the first property can also be written in an equivalent
form by solving for the cardinality of the intersection:

n(A ⋂ B) = n(A) + n(B) – n(A ⋃ B)

Example 16

Fifty students were surveyed, and asked if they were
taking a social science (SS), humanities (HM) or a natural
science (NS) course the next quarter.

21 were taking a SS course 26 were taking a HM course

19 were taking a NS course 9 were taking SS and HM

7 were taking SS and NS 10 were taking HM and NS

3 were taking all three 7 were taking none

How many students are only taking a SS course?
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Answers

It might help to look at a Venn diagram. From the given
data, we know that there are 3 students in region e and 7
students in region h.

Since 7 students were taking a SS and NS course, we
know that n(d) + n(e) = 7. Since we know there are 3
students in region 3, there must be 7 – 3 = 4 students in
region d.

Similarly, since there are 10 students taking HM and NS,
which includes regions e and f, there must be 10 – 3 = 7
students in region f.

Since 9 students were taking SS and HM, there must be 9
– 3 = 6 students in region b.
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Now, we know that 21 students were taking a SS course.
This includes students from regions a, b, d, and e. Since we
know the number of students in all but region a, we can
determine that 21 – 6 – 4 – 3 = 8 students are in region a.

8 students are taking only a SS course.

Try It Now

One hundred fifty people were surveyed and asked if
they believed in UFOs, ghosts, and Bigfoot.

43 believed in UFOs 44 believed in ghosts

25 believed in Bigfoot 10 believed in UFOs and
ghosts

8 believed in ghosts and
Bigfoot

5 believed in UFOs and
Bigfoot

2 believed in all three

How many people surveyed believed in at least one of
these things?
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2. Logic

Logic is a systematic way of thinking that allows us to deduce new
information from old information and to parse the meanings of
sentences. You use logic informally in everyday life and certainly
also in doing mathematics. For example, suppose you are working
with a certain circle, call it “Circle X,” and you have available the
following two pieces of information.

1. Circle X has radius equal to 3.
2. If any circle has radius r, then its area is πr2 square units.

You have no trouble putting these two facts together to get:

3. Circle X has area 9π square units.

In doing this you are using logic to combine existing information
to produce new information. Since a major objective in mathematics
is to deduce new information, logic must play a fundamental role.
This chapter is intended to give you a sufficient mastery of logic.

It is important to realize that logic is a process of deducing
information correctly, not just deducing correct information. For
example, suppose we were mistaken and Circle X actually had a
radius of 4, not 3. Let’s look at our exact same argument again.

1. Circle X has radius equal to 3.
2. If any circle has radius r, then its area is πr2 square units.
3. Circle X has area 9π square units.

The sentence “Circle X has radius equal to 3.” is now untrue, and
so is our conclusion “Circle X has area 9π square units.” But the
logic is perfectly correct; the information was combined correctly,
even if some of it was false. This distinction between correct logic
and correct information is significant because it is often important
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to follow the consequences of an incorrect assumption. Ideally, we
want both our logic and our information to be correct, but the point
is that they are different things.

In proving theorems, we apply logic to information that is
considered obviously true (such as “Any two points determine
exactly one line.”) or is already known to be true (e.g., the
Pythagorean theorem). If our logic is correct, then anything we
deduce from such information will also be true (or at least as true as
the “obviously true” information we began with).

Statements

The study of logic begins with statements. A statement is a
sentence or a mathematical expression that is either definitely true
or definitely false. You can think of statements as pieces of
information that are either correct or incorrect. Thus statements
are pieces of information that we might apply logic to in order to
produce other pieces of information (which are also statements).

Example 1

Here are some examples of statements. They are all true.

If a circle has radius r, then its area is πr2 square
units.

Every even number is divisible by 2.

(2 is an element of the set of integers (or
more simply, 2 is an integer).)

(The square root of 2 is not an integer.)
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(The set of natural numbers is a subset of
the set of integers.)

The set {0,1,2} has three elements.

Some right triangles are isosceles.

Example 2

Here are some additional statements. They are all false.

All right triangles are isosceles.

5 = 2

(The square root of 2 is not a real

number.)

(The set of integers is a subset of the set of
natural numbers.)

(The intersection of the set
{0,1,2} and the natural numbers is the empty set.)

Example 3

Here we pair sentences or expressions that are not
statements with similar expressions that are statements.
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NOT Statements Statements

Add 5 to both sides. Adding 5 to both sides of x − 5 = 37
gives x = 42.

(The set of
integers)

(42 is an element of the
set of integers.)

42 42 is not a number.

What is the solution
of 2x = 84? The solution of 2x = 84 is 42.

Example 4

We will often use the letters P, Q, R, and S to stand
for specific statements. When more letters are needed we
can use subscripts. Here are more statements, designated
with letters. You decide which of them are true and which
are false.

P : For every integer n > 1, the number 2n − 1 is
prime.
Q : Every polynomial of degree n has at most n roots.
R : The function f(x) = x2 is continuous.
S1 :
S2 :

Designating statements with letters (as was done above) is a very
useful shorthand. In discussing a particular statement, such as “The
function f(x) = x2 is continuous,” it is convenient to just refer to it as
R to avoid having to write or say it many times.
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Statements can contain variables. Here is an example.
P : If an integer x is a multiple of 6, then x is even.

This is a sentence that is true. (All multiples of 6 are even, so
no matter which multiple of 6 the integer x happens to be, it is
even.) Since the sentence P is definitely true, it is a statement. When
a sentence or statement P contains a variable such as x, we
sometimes denote it as P(x) to indicate that it is saying something
about x. Thus the above statement can be denoted as

P(x) : If an integer x is a multiple of 6, then x is even.
A statement or sentence involving two variables might be

denoted P(x, y), and so on.
It is quite possible for a sentence containing variables to not be

a statement. Consider the following example.
Q(x) : The integer x is even.

Is this a statement? Whether it is true or false depends on just
which integer x is. It is true if x = 4 and false if x = 7, etc. But without
any stipulations on the value of x it is impossible to say whether
Q(x) is true or false. Since it is neither definitely true nor definitely
false, Q(x) cannot be a statement. A sentence such as this, whose
truth depends on the value of one or more variables, is called an
open sentence. The variables in an open sentence (or statement)
can represent any type of entity, not just numbers. Here is an open
sentence where the variables are functions:

R(f, g) : The function f is the derivative of the function g.
This open sentence is true if f(x) = 2x and g(x) = x2. It is false if

f(x) = x3 and g(x) = x2, etc. We point out that a sentence such as R(f,
g) (that involves variables) can be denoted either as R(f, g) or just R.
We use the expression R(f, g) when we want to emphasize that the
sentence involves variables.

We will have more to say about open sentences later, but for now
let’s return to statements.

Statements are everywhere in mathematics. Any result or
theorem that has been proved true is a statement. The quadratic
formula and the Pythagorean theorem are both statements:

P : The solutions of the equation
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.

Q : If a right triangle has legs of lengths a and b and hypotenuse
of length ..

Here is a very famous statement, so famous, in fact, that it has
a name. It is called Fermat’s last theorem after Pierre Fermat, a
seventeenth-century French mathematician who scribbled it in the
margin of a notebook.

R : For all numbers a, b, c, n ∈ with n > 2, it is the case that
.

Fermat believed this statement was true. He noted that he could
prove it was true, except his notebook’s margin was too narrow to
contain his proof. It is doubtful that he really had a correct proof
in mind, for after his death generations of brilliant mathematicians
tried unsuccessfully to prove that his statement was true (or false).
Finally, in 1993, Andrew Wiles of Princeton University announced
that he had devised a proof. Wiles had worked on the problem for
over seven years, and his proof runs through hundreds of pages. The
moral of this story is that some true statements are not obviously
true.

Here is another statement famous enough to be named. It was
first posed in the eighteenth century by the German mathematician
Christian Goldbach, and thus is called the Goldbach conjecture:

S : Every even integer greater than 2 is a sum of two prime
numbers.

You must agree that S is either true or false. It appears to be true,
because when you examine even numbers that are bigger than 2,
they seem to be sums of two primes: 4 = 2+2, 6 = 3+3, 8 = 3+5, 10 =
5+5, 12 = 5+7, 100 = 17+83 and so on. But that’s not to say there isn’t
some large even number that’s not the sum of two primes. If such
a number exists, then S is false. The thing is, in the over 260 years
since Goldbach first posed this problem, no one has been able to
determine whether it’s true or false. But since it is clearly either true
or false, S is a statement.
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This book is about the methods that can be used to prove that S
(or any other statement) is true or false. To prove that a statement
is true, we start with obvious statements (or other statements that
have been proven true) and use logic to deduce more and more
complex statements until finally we obtain a statement such as S.
Of course some statements are more difficult to prove than others,
and S appears to be notoriously difficult; we will concentrate on
statements that are easier to prove.

But the point is this: In proving that statements are true, we
use logic to help us understand statements and to combine pieces
of information to produce new pieces of information. In the next
several sections we explore some standard ways that statements
can be combined to form new statements, or broken down into
simpler statements.

And, Or, Not

The word “and” can be used to combine two statements to form a
new statement. Consider for example the following sentence.

R1 : The number 2 is even and the number 3 is odd.
We recognize this as a true statement, based on our common-

sense understanding of the meaning of the word “and.” Notice
that R1 is made up of two simpler statements:

P : The number 2 is even.
Q : The number 3 is odd.

These are joined together by the word “and” to form the more
complex statement R1. The statement R1 asserts that P and Q are
both true. Since both P and Q are in fact true, the statement R1 is
also true.

Had one or both of P and Q been false, then R1 would be false.
For instance, each of the following statements is false.

R2 : The number 1 is even and the number 3 is odd.
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R3 : The number 2 is even and the number 4 is odd.
R4 : The number 3 is even and the number 2 is odd.

From these examples we see that any two statements P and Q
can be combined to form a new statement “P and Q.” In the spirit
of using letters to denote statements, we now introduce the special
symbol ∧ to stand for the word “and.” Thus if P and Q are statements,
P ∧ Q stands for the statement “P and Q.” The statement P ∧ Q is true

if both P and Q are true; otherwise it is false. This is summarized in
the following table, called a truth table.

P Q P ∧∧ Q

T T T

T F F

F T F

F F F

In this table, T stands for “True,” and F stands for “False.” (T and
F are called truth values.) Each line lists one of the four possible
combinations or truth values for P and Q, and the column headed by
P ∧ Q tells whether the statement P ∧ Q is true or false in each case.

Statements can also be combined using the word “or.” Consider
the following four statements.

S1 : The number 2 is even or the number 3 is odd.
S2 : The number 1 is even or the number 3 is odd.
S3 : The number 2 is even or the number 4 is odd.
S4 : The number 3 is even or the number 2 is odd.

In mathematics, the assertion “P or Q” is always understood to
mean that one or both of P and Q is true. Thus statements S1, S2,
S3 are all true, while S4 is false. The symbol ∨ is used to stand for
the word “or.” So if P and Q are statements, P ∨ Q represents the

statement “P or Q.” Here is the truth table.
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P Q P ∨∨ Q

T T T

T F T

F T T

F F F

It is important to be aware that the meaning of “or” expressed
in the above table differs from the way it is sometimes used in
everyday conversation. For example, suppose a university official
makes the following threat:

You pay your tuition or you will be withdrawn from school.
You understand that this means that either you pay your tuition

or you will be withdrawn from school, but not both. In mathematics
we never use the word “or” in such a sense. For us “or” means
exactly what is stated in the table for ∨. Thus P ∨ Q being true means

one or both of P and Q is true. If we ever need to express the fact
that exactly one of P and Q is true, we use one of the following
constructions:

P or Q, but not both.
Either P or Q.

If the university official were a mathematician, he might have
qualified his statement in one of the following ways.

Pay your tuition or you will be withdrawn from school, but
not both.
Either you pay your tuition or you will be withdrawn from
school.

To conclude this section, we mention another way of obtaining
new statements from old ones. Given any statement P, we can form
the new statement “It is not true that P.” For example, consider the
following statement.

The number 2 is even.
This statement is true. Now change it by inserting the words “It is

not true that” at the beginning:
It is not true that the number 2 is even.
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This new statement is false.
For another example, starting with the false statement “

” we get the true statement “It is not true that
.”

We use the symbol ∼ to stand for the words “It’s not true that,”
so ∼ P means “It’s not true that P.” We often read ∼ P simply as “not

P.” Unlike ∧ and ∨, which combine two statements, the symbol ∼ just
alters a single statement. Thus its truth table has just two lines, one
for each possible truth value of P.

P ∼∼ P

T F

F T

The statement ∼ P is called the negation of P. The negation of
a specific statement can be expressed in numerous ways. Consider

P : The number 2 is even.
Here are several ways of expressing its negation.

∼ P : It’s not true that the number 2 is even.

∼ P : It is false that the number 2 is even.

∼ P : The number 2 is not even.
In this section we’ve learned how to combine or modify

statements with the operations ∧, ∨ and ∼. Of course we can also
apply these operations to open sentences or a mixture of open
sentences and statements. For example, (x is an even integer)∧(3 is
an odd integer) is an open sentence that is a combination of an open
sentence and a statement.

Conditional Statements

There is yet another way to combine two statements. Suppose we
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have in mind a specific integer a. Consider the following statement
about a.

R : If the integer a is a multiple of 6, then a is divisible by 2.
We immediately spot this as a true statement based on our

knowledge of integers and the meanings of the words “if” and “then.”
If integer a is a multiple of 6, then a is even, so therefore a is divisible
by 2. Notice that R is built up from two simpler statements:

P : The integer a is a multiple of 6.
Q : The integer a is divisible by 2.
R : If P, then Q.

In general, given any two statements P and Q whatsoever, we can
form the new statement “If P, then Q.” This is written symbolically
as P ⇒ Q which we read as “If P, then Q,” or “P implies Q.” Like ∧

and ∨, the symbol ⇒ has a very specific meaning. When we assert
that the statement P ⇒ Q is true, we mean that if P is true then Q

must also be true. (In other words we mean that the condition P
being true forces Q to be true.) A statement of form P ⇒ Q is called

a conditional statement because it means Q will be true under the
condition that P is true.

You can think of P ⇒ Q as being a promise that whenever P is true,

Q will be true also. There is only one way this promise can be broken
(i.e. be false) and that is if P is true but Q is false. Thus the truth table
for the promise P ⇒ Q is as follows:

P Q P ⇒⇒ Q

T T T

T F F

F T T

F F T

Perhaps you are bothered by the fact that P ⇒ Q is true in the
last two lines of this table. Here’s an example to convince you that
the table is correct. Suppose your professor makes the following
promise:
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If you pass the final exam, then you will pass the course.
Your professor is making the promise

(You pass the exam) ⇒ (You pass the course).
Under what circumstances did she lie? There are four possible

scenarios, depending on whether or not you passed the exam and
whether or not you passed the course. These scenarios are tallied in
the following table.

You pass exam You pass course (You pass exam) ⇒⇒ (You pass course)

T T T

T F F

F T T

F F T

The first line describes the scenario where you pass the exam and
you pass the course. Clearly the professor kept her promise, so we
put a T in the third column to indicate that she told the truth. In
the second line, you passed the exam, but your professor gave you a
failing grade in the course. In this case she broke her promise, and
the F in the third column indicates that what she said was untrue.

Now consider the third row. In this scenario you failed the exam
but still passed the course. How could that happen? Maybe your
professor felt sorry for you. But that doesn’t make her a liar. Her
only promise was that if you passed the exam then you would pass
the course. She did not say passing the exam was the only way to
pass the course. Since she didn’t lie, then she told the truth, so there
is a T in the third column.

Finally look at the fourth row. In that scenario you failed the
exam and you failed the course. Your professor did not lie; she did
exactly what she said she would do. Hence the T in the third column.

In mathematics, whenever we encounter the construction “If P,
then Q” it means exactly what the truth table for ⇒ expresses. But
of course there are other grammatical constructions that also mean
P ⇒ Q. Here is a summary of the main ones.
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These can all be used in the place of (and mean exactly the same
thing as) “If P, then Q.” You should analyze the meaning of each one
and convince yourself that it captures the meaning of P ⇒ Q. For

example, P ⇒ Q means the condition of P being true is enough (i.e.,

sufficient) to make Q true; hence “P is a sufficient condition for Q.”
The wording can be tricky. Often an everyday situation involving

a conditional statement can help clarify it. For example, consider
your professor’s promise:

(You pass the exam) ⇒ (You pass the course)
This means that your passing the exam is a sufficient (though

perhaps not necessary) condition for your passing the course. Thus
your professor might just as well have phrased her promise in one
of the following ways.

Passing the exam is a sufficient condition for passing the
course.
For you to pass the course, it is sufficient that you pass the
exam.

However, when we want to say “If P, then Q” in everyday
conversation, we do not normally express this as “Q is a necessary
condition for P” or “P only if Q.” But such constructions are not
uncommon in mathematics. To understand why they make sense,
notice that P ⇒ Q being true means that it’s impossible that P is true

but Q is false, so in order for P to be true it is necessary that Q is
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true; hence “Q is a necessary condition for P.” And this means that P
can only be true if Q is true, i.e., “P only if Q.”

Biconditional Statements

It is important to understand that P ⇒ Q is not the same as Q

⇒ P. To see why, suppose that a is some integer and consider the
statements

(a is a multiple of 6) ⇒ (a is divisible by 2),
(a is divisible by 2) ⇒ (a is a multiple of 6).

The first statement asserts that if a is a multiple of 6 then a is
divisible by 2. This is clearly true, for any multiple of 6 is even and
therefore divisible by 2. The second statement asserts that if a is
divisible by 2 then it is a multiple of 6. This is not necessarily true,
for a = 4 (for instance) is divisible by 2, yet not a multiple of 6.
Therefore the meanings of P ⇒ Q and Q ⇒ P are in general quite

different. The conditional statement Q ⇒ P is called the converse of

P ⇒ Q, so a conditional statement and its converse express entirely
different things.

However, the contrapositive of P ⇒ Q, ~Q ⇒ ~P, is

equivalent to P ⇒ Q. Similarly, the inverse of P ⇒ Q,

which is ~P ⇒ ~Q, is equivalent to the converse Q ⇒ P.
In “Truth Tables for Statements,” we will learn how to
show these equivalences using a truth table.

But sometimes, if P and Q are just the right statements, it can
happen that P ⇒ Q and Q ⇒ P are both necessarily true. For
example, consider the statements

46 | Logic



(a is even) ⇒ (a is divisible by 2),
(a is divisible by 2) ⇒ (a is even).

No matter what value a has, both of these statements are true.
Since both P ⇒ Q and Q ⇒ P are true, it follows that (P ⇒ Q)∧(Q ⇒

P) is true.
We now introduce a new symbol ⇔ to express the meaning of

the statement (P ⇒ Q)∧(Q ⇒ P). The expression P ⇔ Q is understood

to have exactly the same meaning as (P ⇒ Q)∧(Q ⇒ P). According to

the previous section, Q ⇒ P is read as “P if Q,” and P ⇒ Q can be read

as “P only if Q.” Therefore we pronounce P ⇔ Q as “P if and only if

Q.” For example, given an integer a, we have the true statement
(a is even) ⇔ (a is divisible by 2),

which we can read as “Integer a is even if and only if a is divisible
by 2.”

The truth table for ⇔ is shown below. Notice that in the first and
last rows, both P ⇒ Q and Q ⇒ P are true (according to the truth
table for ⇒), so (P ⇒ Q) ∧ (Q ⇒ P) is true, and hence P ⇔ Q is true.
However, in the middle two rows one of P ⇒ Q or Q ⇒ P is false, so
(P ⇒ Q)∧(Q ⇒ P) is false, making P ⇔ Q false.

P Q P ⇔⇔ Q

T T T

T F F

F T F

F F T

Compare the statement R : (a is even) ⇔ (a is divisible by 2) with
this truth table. If a is even then the two statements on either side
of ⇔ are true, so according to the table R is true. If a is odd then the
two statements on either side of ⇔ are false, and again according
to the table R is true. Thus R is true no matter what value a has. In
general, P ⇔ Q being true means P and Q are both true or both false.
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Not surprisingly, there are many ways of saying P ⇔ Q in English.

The following constructions all mean P ⇔ Q:

The first three of these just combine constructions from the
previous section to express that P ⇒ Q and Q ⇒ P. In the last one,

the words “and conversely” mean that in addition to “If P, then Q”
being true, the converse statement “If Q, then P” is also true.

Truth Tables for Statements

You should now know the truth tables for ∧, ∨, ∼, ⇒ and ⇔. They
should be internalized as well as memorized. You must understand
the symbols thoroughly, for we now combine them to form more
complex statements.

For example, suppose we want to convey that one or the other
of P and Q is true but they are not both true. No single symbol
expresses this, but we could combine them as

(P ∨ Q)∧ ∼ (P ∧ Q),
which literally means:

P or Q is true, and it is not the case that both P and Q are true.
This statement will be true or false depending on the truth values

of P and Q. In fact we can make a truth table for the entire
statement. Begin as usual by listing the possible true/false
combinations of P and Q on four lines. The statement (P ∨ Q)∧ ∼ (P ∧

Q) contains the individual statements (P ∨ Q) and (P ∧ Q), so we next
tally their truth values in the third and fourth columns. The fifth
column lists values for ∼ (P ∧ Q), and these are just the opposites of
the corresponding entries in the fourth column. Finally, combining
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the third and fifth columns with ∧, we get the values for (P ∨ Q)∧ ∼(P

∧ Q) in the sixth column.

P Q (P ∨∨ Q) (P ∧∧ Q) ∼∼(P ∧∧ Q) (P ∨∨ Q)∧∧ ∼∼(P ∧∧ Q)

T T T T F F

T F T F T T

F T T F T T

F F F F T F

This truth table tells us that (P ∨ Q)∧ ∼(P ∧ Q) is true precisely
when one but not both of P and Q are true, so it has the meaning we
intended. (Notice that the middle three columns of our truth table
are just “helper columns” and are not necessary parts of the table.
In writing truth tables, you may choose to omit such columns if you
are confident about your work.)

For another example, consider the following familiar statement
concerning two real numbers x and y:

The product xy equals zero if and only if x = 0 or y = 0.
This can be modeled as (xy = 0) ⇔ (x = 0 ∨ y = 0). If we introduce

letters P, Q, and R for the statements xy = 0, x = 0 and y = 0, it
becomes P ⇔ (Q ∨ R). Notice that the parentheses are necessary
here, for without them we wouldn’t know whether to read the
statement as P ⇔ (Q ∨ R) or (P ⇔ Q) ∨ R.

Making a truth table for P ⇔ (Q ∨ R) entails a line for each T/F

combination for the three statements P, Q, and R. The eight possible
combinations are tallied in the first three columns of the following
table.
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P Q R Q ∨∨ R P ⇔⇔ (Q ∨∨ R)

T T T T T

T T F T T

T F T T T

T F F F F

F T T T F

F T F T F

F F T T F

F F F F T

We fill in the fourth column using our knowledge of the truth
table for ∨. Finally the fifth column is filled in by combining the first
and fourth columns with our understanding of the truth table for ⇔.
The resulting table gives the true/false values of P ⇔ (Q ∨ R) for all

values of P, Q, and R.
Notice that when we plug in various values for x and y, the

statements P : xy = 0, Q : x = 0 and R : y = 0 have various truth values,
but the statement P ⇔ (Q ∨ R) is always true. For example, if x = 2

and y = 3, then P, Q, and R are all false. This scenario is described in
the last row of the table, and there we see that P ⇔ (Q ∨ R) is true.

Likewise if x = 0 and y = 7, then P and Q are true and R is false, a
scenario described in the second line of the table, where again P ⇔

(Q ∨ R) is true. There is a simple reason why P ⇔ (Q ∨ R) is true for

any values of x and y: It is that P ⇔ (Q ∨ R) represents (xy = 0) ⇔ (x

= 0 ∨ y = 0), which is a true mathematical statement. It is absolutely
impossible for it to be false.

This may make you wonder about the lines in the table where P ⇔

(Q ∨ R) is false. Why are they there? The reason is that P ⇔ (Q ∨ R)
can also represent a false statement. To see how, imagine that at the
end of the semester your professor makes the following promise.

You pass the class if and only if you get an “A” on the final or
you get a “B” on the final.

This promise has the form P ⇔ (Q ∨ R), so its truth values are
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tabulated in the above table. Imagine it turned out that you got an
“A” on the exam but failed the course. Then surely your professor
lied to you. In fact, P is false, Q is true and R is false. This scenario
is reflected in the sixth line of the table, and indeed P ⇔ (Q ∨ R) is
false (i.e., it is a lie).

The moral of this example is that people can lie, but true
mathematical statements never lie.

We close this section with a word about the use of parentheses.
The symbol ∼ is analogous to the minus sign in algebra. It negates
the expression it precedes. Thus ∼P ∨ Q means (∼P) ∨ Q, not ∼(P ∨

Q). In ∼(P ∨ Q), the value of the entire expression P ∨ Q is negated.

Logical Equivalence

In contemplating the truth table for P ⇔ Q, you probably noticed

that P ⇔ Q is true exactly when P and Q are both true or both false.

In other words, P ⇔ Q is true precisely when at least one of the

statements P ∧ Q or ∼P ∧ ∼Q is true. This may tempt us to say that P

⇔ Q means the same thing as (P ∧ Q)∨(∼P ∧ ∼Q).

To see if this is really so, we can write truth tables for P ⇔ Q

and (P ∧ Q) ∨ (∼P ∧ ∼Q). In doing this, it is more efficient to put
these two statements into the same table, as follows. (This table has
helper columns for the intermediate expressions ∼P, ∼Q, (P ∧ Q), and

(~P ∧ ∼Q).)

P Q ∼∼P ∼∼Q (P ∧∧ Q) (∼∼P ∧∧ ∼∼Q) (P ∧∧ Q)∨∨(∼∼P ∧∧ ∼∼Q) P ⇔⇔ Q

T T F F T F T T

T F F T F F F F

F T T F F F F F

F F T T F T T T
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The table shows that P ⇔ Q and (P ∧ Q)∨(∼P ∧ ∼Q) have the same

truth value, no matter the values P and Q. It is as if P ⇔ Q and

(P∧Q)∨(∼P ∧ ∼Q) are algebraic expressions that are equal no matter

what is “plugged into” variables P and Q. We express this state of
affairs by writing

P ⇔ Q = (P ∧ Q)∨(∼P ∧ ∼Q)

and saying that P ⇔ Q and (P ∧ Q)∨(∼P ∧ ∼Q) are logically
equivalent.

In general, two statements are logically equivalent if their
truth values match up line-for-line in a truth table.

Logical equivalence is important because it can give us different
(and potentially useful) ways of looking at the same thing. As an
example, the following table shows that P ⇒ Q is logically equivalent

to (∼Q) ⇒ (∼P).

P Q ∼∼P ∼∼Q (∼∼Q) ⇒⇒ (∼∼P) P ⇒⇒ Q

T T F F T T

T F F T F F

F T T F T T

F F T T T T

The fact that P ⇒ Q = (∼Q) ⇒ (∼P) is useful because so many

theorems have the form P ⇒ Q. As we will see in Chapter 5, proving
such a theorem may be easier if we express it in the logically
equivalent form (∼Q) ⇒ (∼P).

There are two pairs of logically equivalent statements that come
up again and again throughout this book and beyond. They are
prevalent enough to be dignified by a special name: DeMorgan’s
laws.
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Fact: DeMorgan’s Laws

1. ∼(P ∧ Q) = (∼P)∨(∼Q)

2. ∼(P ∨ Q) = (∼P)∧(∼Q)

The first of DeMorgan’s laws is verified by the following table. You
are asked to verify the second in one of the exercises.

P Q ~P ~Q P ∧∧ Q ∼∼(P ∧∧ Q) (∼∼P)∨∨(∼∼Q)

T T F F T F F

T F F T F T T

F T T F F T T

F F T T F T T

DeMorgan’s laws are actually very natural and intuitive. Consider
the statement ∼(P ∧ Q), which we can interpret as meaning that it is

not the case that both P and Q are true. If it is not the case that both
P and Q are true, then at least one of P or Q is false, in which case
(∼P)∨(∼Q) is true. Thus ∼(P ∧ Q) means the same thing as (∼P)∨(∼Q).

DeMorgan’s laws can be very useful. Suppose we happen to know
that some statement having form ∼(P ∨ Q) is true. The second of

DeMorgan’s laws tells us that (∼Q)∧(∼P) is also true, hence ∼P and ∼Q
are both true as well. Being able to quickly obtain such additional
pieces of information can be extremely useful.

Here is a summary of some significant logical equivalences. Those
that are not immediately obvious can be verified with a truth table.
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Notice how the distributive law P ∧ (Q ∨ R) = (P ∧ Q) ∨ (P ∧ R) has

the same structure as the distributive law p(q + r) = p · q + p · r from
algebra. Concerning the associative laws, the fact that P ∧ (Q ∧ R) =

(P ∧ Q) ∧ R means that the position of the parentheses is irrelevant,

and we can write this as P ∧ Q ∧ R without ambiguity. Similarly, we

may drop the parentheses in an expression such as P ∨ (Q ∨ R).
But parentheses are essential when there is a mix of ∧ and ∨, as

in P ∨(Q ∧ R). Indeed, P ∨(Q ∧ R) and (P ∨ Q) ∧ R are not logically
equivalent.

Negating Statements

Given a statement R, the statement ∼R is called the negation of R. If
R is a complex statement, then it is often the case that its negation
∼R can be written in a simpler or more useful form. The process of

finding this form is called negating R. In proving theorems it is often
necessary to negate certain statements. We now investigate how to
do this.

We have already examined part of this topic. DeMorgan’s laws
∼ (P ∧Q) = (∼ P)∨(∼ Q)

∼ (P ∨Q) = (∼ P)∧(∼ Q)
(from “Logical Equivalence”) can be viewed as rules that tell us
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how to negate the statements P ∧Q and P ∨Q. Here are some
examples that illustrate how DeMorgan’s laws are used to negate
statements involving “and” or “or.”

Example 5

Consider negating the following statement.

R : You can solve it by factoring or with the
quadratic formula.

Now, R means (You can solve it by factoring) ∨ (You can
solve it with Q.F.), which we will denote as P ∨ Q. The
negation of this is

∼(P ∨ Q) = (∼P)∧(∼Q).

Therefore, in words, the negation of R is

∼R : You can’t solve it by factoring and you can’t
solve it with the quadratic formula.

Maybe you can find ∼R without invoking DeMorgan’s
laws. That is good; you have internalized DeMorgan’s laws
and are using them unconsciously.

Example 6

We will negate the following sentence.

R : The numbers x and y are both odd.
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This statement means (x is odd) ∧ (y is odd), so its
negation is

~[(x is odd) ∧ (y is odd)] = ∼(x is odd) ∨ ∼(y is odd)
(x is odd) ∧ (y is odd) = (x is even) ∨ (y is even).

Therefore the negation of R can be expressed in the
following ways:

∼ R : The number x is even or the number y is even.
∼ R : At least one of x and y is even.

Now let’s move on to a slightly different kind of problem. It’s often
necessary to find the negations of quantified statements. For
example, consider ∼(∀x ∈ , P(x)). Reading this in words, we have
the following:

It is not the case that P(x) is true for all natural numbers x.
This means P(x) is false for at least one x. In symbols, this is ∃ x ∈

, ∼P(x). Thus ∼ (∀x ∈ , P(x)) = ∃ x ∈ , ∼P(x). Similarly, you can

reason out that ∼ (∃ x ∈ , P(x)) = ∀x ∈ , ∼P(x). In general:

∼ (∀x ∈ S, P(x)) = ∃ x ∈ S, ∼P(x)

∼ (∃ x ∈ S, P(x)) = ∀x ∈ S, ∼P(x)

Logical Inference

Suppose we know that a statement of form P ⇒ Q is true. This

tells us that whenever P is true, Q will also be true. By itself, P ⇒

Q being true does not tell us that either P or Q is true (they could
both be false, or P could be false and Q true). However if in addition
we happen to know that P is true then it must be that Q is true.
This is called a logical inference: Given two true statements we can
infer that a third statement is true. In this instance true statements
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P ⇒ Q and P are “added together” to get Q. This is described below

with P ⇒ Q and P stacked one atop the other with a line separating

them from Q. The intended meaning is that P ⇒ Q combined with P

produces Q.

Two other logical inferences are listed above. In each case you
should convince yourself (based on your knowledge of the relevant
truth tables) that the truth of the statements above the line forces
the statement below the line to be true.

Following are some additional useful logical inferences. The
first expresses the obvious fact that if P and Q are both true then
the statement P ∧ Q will be true. On the other hand, P ∧ Q being true

forces P (also Q) to be true. Finally, if P is true, then P ∨ Q must be

true, no matter what statement Q is.

These inferences are so intuitively obvious that they scarcely
need to be mentioned. However, they represent certain patterns of
reasoning that we will frequently apply to sentences in proofs, so we
should be cognizant of the fact that we are using them.

The first two statements in each case are called
“premises” and the final statement is the “conclusion.”
We combine premises with ∧ (“and”). The premises
together imply the conclusion. Thus, the first argument
would have (( P ⇒ Q) ∧ P) ⇒ Q as its symbolic statement.
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An Important Note

It is important to be aware of the reasons that we study logic.
There are three very significant reasons. First, the truth tables we
studied tell us the exact meanings of the words such as “and,” “or,”
“not,” and so on. For instance, whenever we use or read the “If…,
then” construction in a mathematical context, logic tells us exactly
what is meant. Second, the rules of inference provide a system in
which we can produce new information (statements) from known
information. Finally, logical rules such as DeMorgan’s laws help us
correctly change certain statements into (potentially more useful)
statements with the same meaning. Thus logic helps us understand
the meanings of statements and it also produces new meaningful
statements.

Logic is the glue that holds strings of statements together and
pins down the exact meaning of certain key phrases such as the
“If…, then” or “For all” constructions. Logic is the common language
that all mathematicians use, so we must have a firm grip on it in
order to write and understand mathematics.

But despite its fundamental role, logic’s place is in the background
of what we do, not the forefront. From here on, the beautiful
symbols ∧, ∨, ⇒, ⇔, ∼, ∀ and ∃ are rarely written. But we are aware
of their meanings constantly. When reading or writing a sentence
involving mathematics we parse it with these symbols, either
mentally or on scratch paper, so as to understand the true and
unambiguous meaning.
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3. Truth Tables and Analyzing
Arguments: Examples

Truth Tables

Because complex Boolean statements can get tricky to think about,
we can create a truth table to keep track of what truth values for
the simple statements make the complex statement true and false

Truth Table

A table showing what the resulting truth value of a
complex statement is for all the possible truth values for
the simple statements.

Example 1

Suppose you’re picking out a new couch, and your
significant other says “get a sectional or something with a
chaise.”

This is a complex statement made of two simpler
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conditions: “is a sectional,” and “has a chaise.” For simplicity,
let’s use S to designate “is a sectional,” and C to designate
“has a chaise.” The condition S is true if the couch is a
sectional.

A truth table for this would look like this:

S C S or C

T T T

T F T

F T T

F F F

In the table, T is used for true, and F for false. In the first
row, if S is true and C is also true, then the complex
statement “S or C” is true. This would be a sectional that
also has a chaise, which meets our desire.

Remember also that or in logic is not exclusive; if the
couch has both features, it does meet the condition.

To shorthand our notation further, we’re going to introduce some
symbols that are commonly used for and, or, and not.

Symbols

The symbol ⋀ is used for and: A and B is notated A ⋀ B.

60 | Truth Tables and Analyzing Arguments: Examples



The symbol ⋁ is used for or: A or B is notated A ⋁ B

The symbol ~ is used for not: not A is notated ~A

You can remember the first two symbols by relating them to the
shapes for the union and intersection. A ⋀ B would be the elements
that exist in both sets, in A ⋂ B. Likewise, A ⋁ B would be the
elements that exist in either set, in A ⋃ B.

In the previous example, the truth table was really just
summarizing what we already know about how the or statement
work. The truth tables for the basic and, or, and not statements are
shown below.

Basic Truth Tables

A B A ⋀⋀ B

T T T

T F F

F T F

F F F
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A B A ⋁⋁ B

T T T

T F T

F T T

F F F

A ~A

T F

F T

Truth tables really become useful when analyzing more complex
Boolean statements.

Example 2

Create a truth table for the statement A ⋀ ~(B ⋁ C)

It helps to work from the inside out when creating truth
tables, and create tables for intermediate operations. We
start by listing all the possible truth value combinations for
A, B, and C. Notice how the first column contains 4 Ts
followed by 4 Fs, the second column contains 2 Ts, 2 Fs,
then repeats, and the last column alternates. This pattern
ensures that all combinations are considered. Along with
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those initial values, we’ll list the truth values for the
innermost expression, B ⋁ C.

A B C B ⋁ C

T T T T

T T F T

T F T T

T F F F

F T T T

F T F T

F F T T

F F F F

Next we can find the negation of B ⋁ C, working off the B
⋁ C column we just created.

A B C B ⋁ C ~(B ⋁ C)

T T T T F

T T F T F

T F T T F

T F F F T

F T T T F

F T F T F

F F T T F

F F F F T

Finally, we find the values of A and ~(B ⋁ C)
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A B C B ⋁ C ~(B ⋁ C) A ⋀ ~(B ⋁ C)

T T T T F F

T T F T F F

T F T T F F

T F F F T T

F T T T F F

F T F T F F

F F T T F F

F F F F T F

It turns out that this complex expression is only true in
one case: if A is true, B is false, and C is false.

When we discussed conditions earlier, we discussed the type where
we take an action based on the value of the condition. We are
now going to talk about a more general version of a conditional,
sometimes called an implication.

Implications

Implications are logical conditional sentences stating
that a statement p, called the antecedent, implies a
consequence q.

Implications are commonly written as p → q
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Implications are similar to the conditional statements we looked at
earlier; p → q is typically written as “if p then q,” or “p therefore
q.” The difference between implications and conditionals is that
conditionals we discussed earlier suggest an action—if the condition
is true, then we take some action as a result. Implications are a
logical statement that suggest that the consequence must logically
follow if the antecedent is true.

Example 3

The English statement “If it is raining, then there are
clouds is the sky” is a logical implication. It is a valid
argument because if the antecedent “it is raining” is true,
then the consequence “there are clouds in the sky” must
also be true.

Notice that the statement tells us nothing of what to expect if it is
not raining. If the antecedent is false, then the implication becomes
irrelevant.

Example 4

A friend tells you that “if you upload that picture to
Facebook, you’ll lose your job.” There are four possible
outcomes:

1. You upload the picture and keep your job
2. You upload the picture and lose your job
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3. You don’t upload the picture and keep your job
4. You don’t upload the picture and lose your job

There is only one possible case where your friend was
lying—the first option where you upload the picture and
keep your job. In the last two cases, your friend didn’t say
anything about what would happen if you didn’t upload the
picture, so you can’t conclude their statement is invalid,
even if you didn’t upload the picture and still lost your job.

In traditional logic, an implication is considered valid (true) as long
as there are no cases in which the antecedent is true and the
consequence is false. It is important to keep in mind that symbolic
logic cannot capture all the intricacies of the English language.

Truth Values for Implications

p q p → q

T T T

T F F

F T T

F F T
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Example 5

Construct a truth table for the statement (m ⋀ ~p) → r

We start by constructing a truth table for the antecedent.

m p ~p m ⋀ ~p

T T F F

T F T T

F T F F

F F T F

Now we can build the truth table for the implication

m p ~p m ⋀ ~p r (m ⋀ ~p) → r

T T F F T T

T F T T T T

F T F F T T

F F T F T T

T T F F F T

T F T T F F

F T F F F T

F F T F F T

In this case, when m is true, p is false, and r is false, then
the antecedent m ⋀ ~p will be true but the consequence
false, resulting in a invalid implication; every other case
gives a valid implication.
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For any implication, there are three related statements, the
converse, the inverse, and the contrapositive.

Related Statements

The original implication is “if p then q”: p → q

The converse is “if q then p”: q → p

The inverse is “if not p then not q”: ~p → ~q

The contrapositive is “if not q then not p”: ~q → ~p

Example 6

Consider again the valid implication “If it is raining, then
there are clouds in the sky.”

The converse would be “If there are clouds in the sky, it is
raining.” This is certainly not always true.

The inverse would be “If it is not raining, then there are
not clouds in the sky.” Likewise, this is not always true.

The contrapositive would be “If there are not clouds in
the sky, then it is not raining.” This statement is valid, and is
equivalent to the original implication.

Looking at truth tables, we can see that the original conditional and
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the contrapositive are logically equivalent, and that the converse
and inverse are logically equivalent.

Implication Converse Inverse Contrapositive

p q p → q q → p ~p → ~q ~q → ~p

T T T T T T

T F F T T F

F T T F F T

F F T T T T

Equivalence

A conditional statement and its contrapositive are
logically equivalent.

The converse and inverse of a statement are logically
equivalent.

Arguments

A logical argument is a claim that a set of premises support a
conclusion. There are two general types of arguments: inductive
and deductive arguments.
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Argument types

An inductive argument uses a collection of specific
examples as its premises and uses them to propose a
general conclusion.

A deductive argument uses a collection of general
statements as its premises and uses them to propose a
specific situation as the conclusion.

Example 7

The argument “when I went to the store last week I
forgot my purse, and when I went today I forgot my purse. I
always forget my purse when I go the store” is an inductive
argument.

The premises are:

I forgot my purse last week
I forgot my purse today

The conclusion is:

I always forget my purse

Notice that the premises are specific situations, while the
conclusion is a general statement. In this case, this is a
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fairly weak argument, since it is based on only two
instances.

Example 8

The argument “every day for the past year, a plane flies
over my house at 2pm. A plane will fly over my house every
day at 2pm” is a stronger inductive argument, since it is
based on a larger set of evidence.

Evaluating inductive arguments

An inductive argument is never able to prove the
conclusion true, but it can provide either weak or strong
evidence to suggest it may be true.

Many scientific theories, such as the big bang theory, can never
be proven. Instead, they are inductive arguments supported by a
wide variety of evidence. Usually in science, an idea is considered a
hypothesis until it has been well tested, at which point it graduates
to being considered a theory. The commonly known scientific
theories, like Newton’s theory of gravity, have all stood up to years
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of testing and evidence, though sometimes they need to be adjusted
based on new evidence. For gravity, this happened when Einstein
proposed the theory of general relativity.

A deductive argument is more clearly valid or not, which makes
them easier to evaluate.

Evaluating deductive arguments

A deductive argument is considered valid if all the
premises are true, and the conclusion follows logically
from those premises. In other words, the premises are
true, and the conclusion follows necessarily from those
premises.

Example 9

The argument “All cats are mammals and a tiger is a cat,
so a tiger is a mammal” is a valid deductive argument.

The premises are:

All cats are mammals
A tiger is a cat

The conclusion is:

A tiger is a mammal
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Both the premises
are true. To see that the premises must logically lead to the
conclusion, one approach would be use a Venn diagram.
From the first premise, we can conclude that the set of cats
is a subset of the set of mammals. From the second
premise, we are told that a tiger lies within the set of cats.
From that, we can see in the Venn diagram that the tiger
also lies inside the set of mammals, so the conclusion is
valid.

Truth Tables and Analyzing Arguments: Examples | 73



Analyzing Arguments with Venn
Diagrams1

To analyze an argument with a Venn diagram

1. Draw a Venn diagram based on the premises of
the argument

2. If the premises are insufficient to determine
what determine the location of an element,
indicate that.

3. The argument is valid if it is clear that the
conclusion must be true

Example 10

Premise: All firefighters know CPR
Premise: Jill knows CPR
Conclusion: Jill is a firefighter

1. Technically, these are Euler circles or Euler diagrams,
not Venn diagrams, but for the sake of simplicity we’ll
continue to call them Venn diagrams.
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From the first
premise, we know that firefighters all lie inside the set of
those who know CPR. From the second premise, we know
that Jill is a member of that larger set, but we do not have
enough information to know if she also is a member of the
smaller subset that is firefighters.

Since the conclusion does not necessarily follow from the
premises, this is an invalid argument, regardless of whether
Jill actually is a firefighter.

It is important to note that whether or not Jill is actually a firefighter
is not important in evaluating the validity of the argument; we are
only concerned with whether the premises are enough to prove the
conclusion.

In addition to these categorical style premises of the form “all
___,” “some ____,” and “no ____,” it is also common to see
premises that are implications.
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Example 11

Premise: If you live in Seattle, you live in
Washington.
Premise: Marcus does not live in Seattle
Conclusion: Marcus does not live in Washington

From the first
premise, we know that the set of people who live in Seattle
is inside the set of those who live in Washington. From the
second premise, we know that Marcus does not lie in the
Seattle set, but we have insufficient information to know
whether or not Marcus lives in Washington or not. This is
an invalid argument.

76 | Truth Tables and Analyzing Arguments: Examples



Example 12

Consider the argument “You are a married man, so you
must have a wife.”

This is an invalid argument, since there are, at least in
parts of the world, men who are married to other men, so
the premise not insufficient to imply the conclusion.

Some arguments are better analyzed using truth tables.

Example 13

Consider the argument:

Premise: If you bought bread, then you went to
the store
Premise: You bought bread
Conclusion: You went to the store

While this example is hopefully fairly obviously a valid
argument, we can analyze it using a truth table by
representing each of the premises symbolically. We can
then look at the implication that the premises together
imply the conclusion. If the truth table is a tautology
(always true), then the argument is valid.

We’ll get B represent “you bought bread” and S represent
“you went to the store”. Then the argument becomes:

Premise: B → S
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Premise: B
Conclusion: S

To test the validity, we look at whether the combination
of both premises implies the conclusion; is it true that
[(B→S) ⋀ B] → S ?

B S B → S (B→S) ⋀ B [(B→S) ⋀ B] → S

T T T T T

T F F F T

F T T F T

F F T F T

Since the truth table for [(B→S) ⋀ B] → S is always true,
this is a valid argument.

Analyzing arguments using truth tables

To analyze an argument with a truth table:

1. Represent each of the premises symbolically
2. Create a conditional statement, joining all the

premises with and to form the antecedent, and
using the conclusion as the consequent.

3. Create a truth table for that statement. If it is
always true, then the argument is valid.
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Example 14

Premise: If I go to the mall, then I’ll buy new
jeans
Premise: If I buy new jeans, I’ll buy a shirt to go
with it
Conclusion: If I got to the mall, I’ll buy a shirt.

Let M = I go to the mall, J = I buy jeans, and S = I buy a
shirt.

The premises and conclusion can be stated as:

Premise: M → J
Premise: J → S
Conclusion: M → S

We can construct a truth table for [(M→J) ⋀ (J→S)] →
(M→S)

M J S M
→ J

J
→ S

(M→J) ⋀
(J→S)

M
→ S

[(M→J) ⋀ (J→S)]
→ (M→S)

T T T T T T T T

T T F T F F F T

T F T F T F T T

T F F F T F F T

F T T T T T T T

F T F T F F T T

F F T T T T T T

F F F T T T T T

From the truth table, we can see this is a valid argument.
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4. Truth Tables: Conjunction
and Disjunction

This video explores the example “It is snowing OR I am wearing my
hat,” and “It is snowing AND I am wearing my hat.”

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

hostosintrocollegemath/?p=23
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PART IV

MODULE 3: NUMERATION
SYSTEM
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5. Binary, Octal, and
Hexadecimal

In modern computing and digital electronics, the most commonly
used bases are decimal (base 10), binary (base 2), octal (base 8), and
hexadecimal (base 16). If we are converting between two bases other
than decimal, we typically have to convert the number to base 10
first, and then convert that number to the second base. However,
we can easily convert directly from binary to octal, and vice versa,
and from binary to hexadecimal, and vice versa.

This video gives a basic introduction to these conversions:

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

hostosintrocollegemath/?p=25
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For another description, this one is more like a math lecture:

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

hostosintrocollegemath/?p=25

For further clarification, recall that the numbers 0 through 7 can be
represented by up to three digits in base two. In base eight, these
numbers are represented by a single digit.
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Base 2
(binary) number

Base 10
(decimal) equivalent

Base 8
(octal) number

000 0 0

001 1 1

010 2 2

011 3 3

100 4 4

101 5 5

110 6 6

111 7 7

Now when we get to the number 8, we need four digits in base 2
and two digits in base 8. In fact, the numbers 8 through 63 can be
represented by two digits in base 8. We need four, five, or six digits
in base 2 to represent these same numbers:

Base 2 number Base 10 equivalent Base 8 number

1000 8 10 = 1 × 8 + 0 × 1

1001 9 11 = 1 × 8 + 1 × 1

1010 10 12 = 1 × 8 + 2 × 1

… … …

111100 60 74 = 7 × 8 + 4 × 1

111101 61 75 = 7 × 8 + 5 × 1

111110 62 76 = 7 × 8 + 6 × 1

111111 63 77 = 7 × 8 + 7 × 1

The number 64 in base 8 is represented by 1008 = 1 × 82 + 0 × 81 +
0 × 80 = 1 × 64 + 0 × 8 + 0 × 1. In base 2, this would be 10000002.
Do you see a pattern here? For a single digit in base 8, we need up
to three digits in base 2. For two digits in base 8, we need 4, 5, or 6
digits in base 2. For three digits in base 8, we need 7, 8, or 9 digits
in base 2. For each additional digit in base 8, we need up to three
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spaces to represent it in base 2. Here’s a way to remember this: 23

= 8, so we need three spaces.
A couple of examples would help here.

1. Convert the number 61578 to base 2. We split each digit in base
8 to three digits in base 2, using the three digit base 2
equivalent, so 68 = 1102, 18 = 0012, etc.

2. Convert the number 101110110010102 to base 8. Split this
number into sets of three, starting with the right-most digit,
then convert each set of three to its equivalent in base 8.

For hexadecimal (base 16), we need up to four digits in binary to
represent each single digit. Remember this by recalling that 24 = 16,
so we need four digits.

You may want to print out copies of these worksheets to help you
with your conversions between binary and octal or hexadecimal:

• Converting from Binary to Octal
• Converting from Binary to Hexadecimal

If you would like to quiz yourself on converting the numbers 0
through 255 to binary, octal, and hexadecimal (and between those
bases), here’s a link to the representations of those numbers: Binary,
Octal, and Hexadecimal Numbers.
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6. Numeration

Historical Counting Systems Introduction and
Basic Number and Counting Systems

Introduction

As we begin our journey through the history of mathematics, one
question to be asked is “Where do we start?” Depending on how you
view mathematics or numbers, you could choose any of a number
of launching points from which to begin. Howard Eves suggests the
following list of possibilities.1

Where to start the study of the history of mathematics…

• At the first logical geometric “proofs” traditionally credited to
Thales of Miletus (600 BCE).

• With the formulation of methods of measurement made by the
Egyptians and Mesopotamians/Babylonians.

• Where prehistoric peoples made efforts to organize the
concepts of size, shape, and number.

• In pre-human times in the very simple number sense and
pattern recognition that can be displayed by certain animals,
birds, etc.

• Even before that in the amazing relationships of numbers and
shapes found in plants.

• With the spiral nebulae, the natural course of planets, and

1. Eves, Howard; An Introduction to the History of
Mathematics, p. 9.
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other universe phenomena.

We can choose no starting point at all and instead agree that
mathematics has always existed and has simply been waiting in
the wings for humans to discover. Each of these positions can be
defended to some degree and which one you adopt (if any) largely
depends on your philosophical ideas about mathematics and
numbers.

Nevertheless, we need a starting point. Without passing judgment
on the validity of any of these particular possibilities, we will choose
as our starting point the emergence of the idea of number and the
process of counting as our launching pad. This is done primarily as
a practical matter given the nature of this course. In the following
chapter, we will try to focus on two main ideas. The first will be an
examination of basic number and counting systems and the symbols
that we use for numbers. We will look at our own modern (Western)
number system as well those of a couple of selected civilizations to
see the differences and diversity that is possible when humans start
counting. The second idea we will look at will be base systems. By
comparing our own base-ten (decimal) system with other bases, we
will quickly become aware that the system that we are so used to,
when slightly changed, will challenge our notions about numbers
and what symbols for those numbers actually mean.

Recognition of More vs. Less

The idea of number and the process of counting goes back far
beyond history began to be recorded. There is some archeological
evidence that suggests that humans were counting as far back as
50,000 years ago.2 However, we do not really know how this process

2. Eves, p. 9.
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started or developed over time. The best we can do is to make a
good guess as to how things progressed. It is probably not hard to
believe that even the earliest humans had some sense of more and
less. Even some small animals have been shown to have such a sense.
For example, one naturalist tells of how he would secretly remove
one egg each day from a plover’s nest. The mother was diligent
in laying an extra egg every day to make up for the missing egg.
Some research has shown that hens can be trained to distinguish
between even and odd numbers of pieces of food.3 With these sorts
of findings in mind, it is not hard to conceive that early humans had
(at least) a similar sense of more and less. However, our conjectures
about how and when these ideas emerged among humans are
simply that; educated guesses based on our own assumptions of
what might or could have been.

The Need for Simple Counting

As societies and humankind evolved, simply having a sense of more
or less, even or odd, etc., would prove to be insufficient to meet the
needs of everyday living. As tribes and groups formed, it became
important to be able to know how many members were in the
group, and perhaps how many were in the enemy’s camp. Certainly
it was important for them to know if the flock of sheep or other
possessed animals were increasing or decreasing in size. “Just how
many of them do we have, anyway?” is a question that we do not
have a hard time imagining them asking themselves (or each other).

In order to count items such as animals, it is often conjectured
that one of the earliest methods of doing so would be with “tally
sticks.” These are objects used to track the numbers of items to

3. McLeish, John; The Story of Numbers—How
Mathematics Has Shaped Civilization, p. 7.
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Figure 1.

be counted. With this method, each “stick” (or pebble, or whatever
counting device being used) represents one animal or object. This
method uses the idea of one to one correspondence. In a one to one
correspondence, items that are being counted are uniquely linked
with some counting tool.

In the picture to the right,
you see each stick
corresponding to one horse. By
examining the collection of
sticks in hand one knows how
many animals should be
present. You can imagine the
usefulness of such a system, at
least for smaller numbers of
items to keep track of. If a
herder wanted to “count off” his
animals to make sure they were
all present, he could mentally
(or methodically) assign each
stick to one animal and continue to do so until he was satisfied that
all were accounted for.

Of course, in our modern system, we have replaced the sticks
with more abstract objects. In particular, the top stick is replaced
with our symbol “1,” the second stick gets replaced by a “2” and the
third stick is represented by the symbol “3,” but we are getting ahead
of ourselves here. These modern symbols took many centuries to
emerge.

Another possible way of employing the “tally stick” counting
method is by making marks or cutting notches into pieces of wood,
or even tying knots in string (as we shall see later). In 1937, Karl
Absolom discovered a wolf bone that goes back possibly 30,000
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years. It is believed to be a counting device.4 Another example of
this kind of tool is the Ishango Bone, discovered in 1960 at Ishango,
and shown below.5 It is reported to be between six and nine
thousand years old and shows what appear to be markings used to
do counting of some sort.

The markings on rows (a) and (b) each add up to 60. Row (b)
contains the prime numbers between 10 and 20. Row (c) seems to
illustrate for the method of doubling and multiplication used by the
Egyptians. It is believed that this may also represent a lunar phase
counter.

Figure 2.

4. Bunt, Lucas; Jones, Phillip; Bedient, Jack; The Historical
Roots of Elementary Mathematics, p. 2.

5. http://www.math.buffalo.edu/mad/Ancient-Africa/
mad_zaire-uganda.html
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Spoken Words

As methods for counting developed, and as language progressed as
well, it is natural to expect that spoken words for numbers would
appear. Unfortunately, the developments of these words, especially
those corresponding to the numbers from one through ten, are not
easy to trace. Past ten, however, we do see some patterns:

• Eleven comes from “ein lifon,” meaning “one left over.”
• Twelve comes from “twe lif,” meaning “two left over.”
• Thirteen comes from “Three and ten” as do fourteen through

nineteen.
• Twenty appears to come from “twe-tig” which means “two

tens.”
• Hundred probably comes from a term meaning “ten times.”

Written Numbers

When we speak of “written” numbers, we have to be careful because
this could mean a variety of things. It is important to keep in mind
that modern paper is only a little more than 100 years old, so
“writing” in times past often took on forms that might look quite
unfamiliar to us today.

As we saw earlier, some might consider wooden sticks with
notches carved in them as writing as these are means of recording
information on a medium that can be “read” by others. Of course,
the symbols used (simple notches) certainly did not leave a lot of
flexibility for communicating a wide variety of ideas or information.

Other mediums on which “writing” may have taken place include
carvings in stone or clay tablets, rag paper made by hand (twelfth
century in Europe, but earlier in China), papyrus (invented by the
Egyptians and used up until the Greeks), and parchments from
animal skins. And these are just a few of the many possibilities.
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These are just a few examples of early methods of counting and
simple symbols for representing numbers. Extensive books, articles
and research have been done on this topic and could provide
enough information to fill this entire course if we allowed it to.
The range and diversity of creative thought that has been used in
the past to describe numbers and to count objects and people is
staggering. Unfortunately, we don’t have time to examine them all,
but it is fun and interesting to look at one system in more detail to
see just how ingenious people have been.

The Number and Counting System of the Inca
Civilization

Background

There is generally a lack of books and research material concerning
the historical foundations of the Americas. Most of the “important”
information available concentrates on the eastern hemisphere, with
Europe as the central focus. The reasons for this may be twofold:
first, it is thought that there was a lack of specialized mathematics
in the American regions; second, many of the secrets of ancient
mathematics in the Americas have been closely guarded.6 The
Peruvian system does not seem to be an exception here. Two
researchers, Leland Locke and Erland Nordenskiold, have carried
out research that has attempted to discover what mathematical
knowledge was known by the Incas and how they used the Peruvian
quipu, a counting system using cords and knots, in their

6. Diana, Lind Mae; The Peruvian Quipu in Mathematics
Teacher, Issue 60 (Oct., 1967), p. 623–28.
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mathematics. These researchers have come to certain beliefs about
the quipu that we will summarize here.

Counting Boards

It should be noted that the Incas did not have a complicated system
of computation. Where other peoples in the regions, such as the
Mayans, were doing computations related to their rituals and
calendars, the Incas seem to have been more concerned with the
simpler task of record-keeping. To do this, they used what are called
the “quipu” to record quantities of items. (We will describe them
in more detail in a moment.) However, they first often needed to
do computations whose results would be recorded on quipu. To do
these computations, they would sometimes use a counting board
constructed with a slab of stone. In the slab were cut rectangular
and square compartments so that an octagonal (eight-sided) region
was left in the middle. Two opposite corner rectangles were raised.
Another two sections were mounted on the original surface of the
slab so that there were actually three levels available. In the figure
shown, the darkest shaded corner regions represent the highest,
third level. The lighter shaded regions surrounding the corners are
the second highest levels, while the clear white rectangles are the
compartments cut into the stone slab.
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Figure 3.

Pebbles were used to keep accounts and their positions within the
various levels and compartments gave totals. For example, a pebble
in a smaller (white) compartment represented one unit. Note that
there are 12 such squares around the outer edge of the figure. If
a pebble was put into one of the two (white) larger, rectangular
compartments, its value was doubled. When a pebble was put in
the octagonal region in the middle of the slab, its value was tripled.
If a pebble was placed on the second (shaded) level, its value was
multiplied by six. And finally, if a pebble was found on one of the two
highest corner levels, its value was multiplied by twelve. Different
objects could be counted at the same time by representing different
objects by different colored pebbles.

Numeration | 95



Example 1

Suppose you have the following counting board with two
different kind of pebbles places as illustrated. Let the solid
black pebble represent a dog and the striped pebble
represent a cat. How many dogs are being represented?

Solution

Figure 4.

There are two black pebbles in the outer square
regions…these represent 2 dogs. There are three black
pebbles in the larger (white) rectangular compartments.
These represent 6 dogs. There is one black pebble in the
middle region…this represents 3 dogs. There are three
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black pebbles on the second level…these represent 18
dogs. Finally, there is one black pebble on the highest
corner level…this represents 12 dogs. We then have a total
of 2+6+3+18+12 = 41 dogs.

Try It Now

How many cats are represented on this board?
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Figure 5.

The Quipu

This kind of board was good
for doing quick computations,
but it did not provide a good
way to keep a permanent
recording of quantities or
computations. For this purpose,
they used the quipu. The quipu
is a collection of cords with
knots in them. These cords and
knots are carefully arranged so
that the position and type of
cord or knot gives specific
information on how to decipher
the cord.

A quipu is made up of a main
cord which has other cords
(branches) tied to it. See
pictures to the right.7

Locke called the branches H
cords. They are attached to the main cord. B cords, in turn, were
attached to the H cords. Most of these cords would have knots on
them. Rarely are knots found on the main cord, however, and tend
to be mainly on the H and B cords. A quipu might also have a
“totalizer” cord that summarizes all of the information on the cord
group in one place.

Locke points out that there are three types of knots, each
representing a different value, depending on the kind of knot used
and its position on the cord. The Incas, like us, had a decimal (base-

7. Diana, Lind Mae; The Peruvian Quipu in Mathematics
Teacher, Issue 60 (Oct., 1967), p. 623–28.
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ten) system, so each kind of knot had a specific decimal value. The
Single knot, pictured in the middle of figure 68 was used to denote
tens, hundreds, thousands, and ten thousands. They would be on
the upper levels of the H cords. The figure-eight knot on the end
was used to denote the integer “one.” Every other integer from 2 to
9 was represented with a long knot, shown on the left of the figure.
(Sometimes long knots were used to represents tens and hundreds.)
Note that the long knot has several turns in it…the number of turns
indicates which integer is being represented. The units (ones) were
placed closest to the bottom of the cord, then tens right above
them, then the hundreds, and so on.

Figure 6

In order to make reading these pictures easier, we will adopt a
convention that is consistent. For the long knot with turns in it
(representing the numbers 2 through 9), we will use the following
notation:

The four horizontal bars represent four turns and the curved arc
on the right links the four turns together. This would represent the
number 4.

8. http://wiscinfo.doit.wisc.edu/chaysimire/titulo2/
khipus/what.htm
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Figure 7.

We will represent the single knot with a large dot ( · ) and we will
represent the figure eight knot with a sideways eight ( ∞ ).

Example 2

What number is
represented on the cord
shown in figure 7?

Solution

On the cord, we see a
long knot with four turns in
it…this represents four in the ones place. Then 5 single
knots appear in the tens position immediately above that,
which represents 5 tens, or 50. Finally, 4 single knots are
tied in the hundreds, representing four 4 hundreds, or 400.
Thus, the total shown on this cord is 454.

Try It Now

What numbers are represented on each of the four
cords hanging from the main cord?
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Figure 8.

The colors of the cords had meaning and could distinguish one
object from another. One color could represent llamas, while a
different color might represent sheep, for example. When all the
colors available were exhausted, they would have to be re-used.
Because of this, the ability to read the quipu became a complicated
task and specially trained individuals did this job. They were called
Quipucamayoc, which means keeper of the quipus. They would
build, guard, and decipher quipus.
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Figure 9.

As you can see from this
photograph of an actual quipu
(figure 9), they could get quite
complex.

There were various purposes
for the quipu. Some believe that
they were used to keep an
account of their traditions and
history, using knots to record
history rather than some other
formal system of writing. One
writer has even suggested that the quipu replaced writing as it
formed a role in the Incan postal system.9 Another proposed use of
the quipu is as a translation tool. After the conquest of the Incas by
the Spaniards and subsequent “conversion” to Catholicism, an Inca
supposedly could use the quipu to confess their sins to a priest. Yet
another proposed use of the quipu was to record numbers related
to magic and astronomy, although this is not a widely accepted
interpretation.

The mysteries of the quipu have not been fully explored yet.
Recently, Ascher and Ascher have published a book, The Code of
the Quipu: A Study in Media, Mathematics, and Culture, which is
“an extensive elaboration of the logical-numerical system of the
quipu.”10 For more information on the quipu, you may want to check
out “Khipus: a unique Huarochiri legacy.”

We are so used to seeing the symbols 1, 2, 3, 4, etc. that it may
be somewhat surprising to see such a creative and innovative way
to compute and record numbers. Unfortunately, as we proceed

9. Diana, Lind Mae; The Peruvian Quipu in Mathematics
Teacher, Issue 60 (Oct., 1967), p. 623–28.

10. http://www.cs.uidaho.edu/~casey931/seminar/
quipu.html
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through our mathematical education in grade and high school, we
receive very little information about the wide range of number
systems that have existed and which still exist all over the world.
That’s not to say our own system is not important or efficient. The
fact that it has survived for hundreds of years and shows no sign of
going away any time soon suggests that we may have finally found a
system that works well and may not need further improvement, but
only time will tell that whether or not that conjecture is valid or not.
We now turn to a brief historical look at how our current system
developed over history.

The Hindu—Arabic Number System

The Evolution of a System

Our own number system, composed of the ten symbols
{0,1,2,3,4,5,6,7,8,9} is called the Hindu-Arabic system. This is a base-
ten (decimal) system since place values increase by powers of ten.
Furthermore, this system is positional, which means that the
position of a symbol has bearing on the value of that symbol within
the number. For example, the position of the symbol 3 in the
number 435,681 gives it a value much greater than the value of the
symbol 8 in that same number. We’ll explore base systems more
thoroughly later. The development of these ten symbols and their
use in a positional system comes to us primarily from India.11

11. http://www-groups.dcs.st-and.ac.uk/~history/
HistTopics/Indian_numerals.html
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Figure 10. Al-Biruni

It was not until the
fifteenth century that the
symbols that we are familiar
with today first took form in
Europe. However, the history of
these numbers and their
development goes back
hundreds of years. One
important source of
information on this topic is the
writer al-Biruni, whose picture
is shown in figure 10.12 Al-
Biruni, who was born in modern
day Uzbekistan, had visited
India on several occasions and
made comments on the Indian
number system. When we look at the origins of the numbers that
al-Biruni encountered, we have to go back to the third century BCE.
to explore their origins. It is then that the Brahmi numerals were
being used.

The Brahmi numerals were more complicated than those used
in our own modern system. They had separate symbols for the
numbers 1 through 9, as well as distinct symbols for 10, 100, 1000,…,
also for 20, 30, 40,…, and others for 200, 300, 400, …, 900. The
Brahmi symbols for 1, 2, and 3 are shown below.13

12. http://www-groups.dcs.st-and.ac.uk/~history/
Mathematicians/Al-Biruni.html

13. http://www-groups.dcs.st-and.ac.uk/~history/
HistTopics/Indian_numerals.html
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These numerals were used all the way up to the fourth century
CE, with variations through time and geographic location. For
example, in the first century CE, one particular set of Brahmi
numerals took on the following form:14

From the fourth century on, you can actually trace several
different paths that the Brahmi numerals took to get to different
points and incarnations. One of those paths led to our current
numeral system, and went through what are called the Gupta
numerals. The Gupta numerals were prominent during a time ruled
by the Gupta dynasty and were spread throughout that empire
as they conquered lands during the fourth through sixth centuries.
They have the following form:15

How the numbers got to their Gupta form is open to considerable

14. http://www-groups.dcs.st-and.ac.uk/~history/
HistTopics/Indian_numerals.html

15. Ibid.

Numeration | 105



debate. Many possible hypotheses have been offered, most of which
boil down to two basic types.16 The first type of hypothesis states
that the numerals came from the initial letters of the names of the
numbers. This is not uncommon . . . the Greek numerals developed
in this manner. The second type of hypothesis states that they
were derived from some earlier number system. However, there are
other hypotheses that are offered, one of which is by the researcher
Ifrah. His theory is that there were originally nine numerals, each
represented by a corresponding number of vertical lines. One
possibility is this:17

Because these symbols would have taken a lot of time to write,
they eventually evolved into cursive symbols that could be written
more quickly. If we compare these to the Gupta numerals above,
we can try to see how that evolutionary process might have taken
place, but our imagination would be just about all we would have
to depend upon since we do not know exactly how the process
unfolded.

The Gupta numerals eventually evolved into another form of
numerals called the Nagari numerals, and these continued to evolve
until the eleventh century, at which time they looked like this:18

16. Ibid.
17. Ibid.
18. Ibid.
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Figure 11.
Devangari,
eighth
century

Figure 12.
West Arab
Gobar, tenth
century

Figure 13.
Spain, 976
BCE

Note that by this time, the symbol for 0 has appeared! The Mayans
in the Americas had a symbol for zero long before this, however, as
we shall see later in the chapter.

These numerals were adopted by the Arabs, most likely in the
eighth century during Islamic incursions into the northern part of
India.19 It is believed that the Arabs were instrumental in spreading
them to other parts of the world, including Spain (see below).

Other examples of variations up to the eleventh century
include:20

19. Katz, page 230
20. Burton, David M., History of Mathematics, An

Introduction, p. 254–255
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Finally, figure 1421 shows various forms of these numerals as they
developed and eventually converged to the fifteenth century in
Europe.

Figure 14.

The Positional System

More important than the form of the number symbols is the
development of the place value system. Although it is in slight
dispute, the earliest known document in which the Indian system
displays a positional system dates back to 346 CE. However, some

21. Katz, page 231.
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evidence suggests that they may have actually developed a
positional system as far back as the first century CE.

The Indians were not the first to use a positional system. The
Babylonians (as we will see in Chapter 3) used a positional system
with 60 as their base. However, there is not much evidence that
the Babylonian system had much impact on later numeral systems,
except with the Greeks. Also, the Chinese had a base-10 system,
probably derived from the use of a counting board.22 Some believe
that the positional system used in India was derived from the
Chinese system.

Wherever it may have originated, it appears that around 600 CE,
the Indians abandoned the use of symbols for numbers higher than
nine and began to use our familiar system where the position of the
symbol determines its overall value.23 Numerous documents from
the seventh century demonstrate the use of this positional system.

Interestingly, the earliest dated inscriptions using the system with
a symbol for zero come from Cambodia. In 683, the 605th year of
the Saka era is written with three digits and a dot in the middle. The
608th year uses three digits with a modern 0 in the middle.24 The
dot as a symbol for zero also appears in a Chinese work (Chiu-chih
li). The author of this document gives a strikingly clear description
of how the Indian system works:

Using the [Indian] numerals, multiplication and division are
carried out. Each numeral is written in one stroke. When
a number is counted to ten, it is advanced into the higher
place. In each vacant place a dot is always put. Thus the
numeral is always denoted in each place. Accordingly there

22. Ibid, page 230
23. Ibid, page 231.
24. Ibid, page 232.
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can be no error in determining the place. With the numerals,
calculations is easy.25

Transmission to Europe

It is not completely known how the system got transmitted to
Europe. Traders and travelers of the Mediterranean coast may have
carried it there. It is found in a tenth-century Spanish manuscript
and may have been introduced to Spain by the Arabs, who invaded
the region in 711 CE and were there until 1492.

In many societies, a division formed between those who used
numbers and calculation for practical, every day business and those
who used them for ritualistic purposes or for state business.26 The
former might often use older systems while the latter were inclined
to use the newer, more elite written numbers. Competition between
the two groups arose and continued for quite some time.

25. Ibid, page 232.
26. McLeish, p. 18
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Figure 15.

In a fourteenth century
manuscript of Boethius’ The
Consolations of Philosophy,
there appears a well-known
drawing of two
mathematicians. One is a
merchant and is using an
abacus (the “abacist”). The
other is a Pythagorean
philosopher (the “algorist”)
using his “sacred” numbers.
They are in a competition that
is being judged by the goddess
of number. By 1500 CE,
however, the newer symbols
and system had won out and has persevered until today. The Seattle
Times recently reported that the Hindu-Arabic numeral system has
been included in the book The Greatest Inventions of the Past 2000
Years.27

One question to answer is why the Indians would develop such
a positional notation. Unfortunately, an answer to that question is
not currently known. Some suggest that the system has its origins
with the Chinese counting boards. These boards were portable and
it is thought that Chinese travelers who passed through India took
their boards with them and ignited an idea in Indian
mathematics.28 Others, such as G. G. Joseph propose that it is the
Indian fascination with very large numbers that drove them to
develop a system whereby these kinds of big numbers could easily

27. http://seattletimes.nwsource.com/news/health-
science/html98/invs_20000201.html, Seattle Times,
Feb. 1, 2000

28. Ibid, page 232.

Numeration | 111



be written down. In this theory, the system developed entirely
within the Indian mathematical framework without considerable
influence from other civilizations.

The Development and Use of Different Number
Bases

Introduction and Basics

During the previous discussions, we have been referring to
positional base systems. In this section of the chapter, we will
explore exactly what a base system is and what it means if a system
is “positional.” We will do so by first looking at our own familiar,
base-ten system and then deepen our exploration by looking at
other possible base systems. In the next part of this section, we
will journey back to Mayan civilization and look at their unique base
system, which is based on the number 20 rather than the number
10.

A base system is a structure within which we count. The easiest
way to describe a base system is to think about our own base-ten
system. The base-ten system, which we call the “decimal” system,
requires a total of ten different symbols/digits to write any number.
They are, of course, 0, 1, 2, . . . , 9.

The decimal system is also an example of a positional base system,
which simply means that the position of a digit gives its place value.
Not all civilizations had a positional system even though they did
have a base with which they worked.

In our base-ten system, a number like 5,783,216 has meaning to us
because we are familiar with the system and its places. As we know,
there are six ones, since there is a 6 in the ones place. Likewise,
there are seven “hundred thousands,” since the 7 resides in that
place. Each digit has a value that is explicitly determined by its
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position within the number. We make a distinction between digit,
which is just a symbol such as 5, and a number, which is made up of
one or more digits. We can take this number and assign each of its
digits a value. One way to do this is with a table, which follows:

5,000,000 = 5 × 1,000,000 = 5 × 106 Five million

+700,000 = 7 × 100,000 = 7 × 105 Seven hundred thousand

+80,000 = 8 × 10,000 = 8 × 104 Eighty thousand

+3,000 = 3 × 1000 = 3 × 103 Three thousand

+200 = 2 × 100 = 2 × 102 Two hundred

+10 = 1 × 10 = 1 × 101 Ten

+6 = 6 × 1 = 6 × 100 Six

5,783,216 Five million, seven hundred eighty-three thousand, two
hundred sixteen

From the third column in the table we can see that each place is
simply a multiple of ten. Of course, this makes sense given that our
base is ten. The digits that are multiplying each place simply tell us
how many of that place we have. We are restricted to having at most
9 in any one place before we have to “carry” over to the next place.
We cannot, for example, have 11 in the hundreds place. Instead, we
would carry 1 to the thousands place and retain 1 in the hundreds
place. This comes as no surprise to us since we readily see that 11
hundreds is the same as one thousand, one hundred. Carrying is a
pretty typical occurrence in a base system.

However, base-ten is not the only option we have. Practically any
positive integer greater than or equal to 2 can be used as a base for a
number system. Such systems can work just like the decimal system
except the number of symbols will be different and each position
will depend on the base itself.
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Other Bases

For example, let’s suppose we adopt a base-five system. The only
modern digits we would need for this system are 0,1,2,3 and 4. What
are the place values in such a system? To answer that, we start with
the ones place, as most base systems do. However, if we were to
count in this system, we could only get to four (4) before we had
to jump up to the next place. Our base is 5, after all! What is that
next place that we would jump to? It would not be tens, since we are
no longer in base-ten. We’re in a different numerical world. As the
base-ten system progresses from 100 to 101, so the base-five system
moves from 50 to 51 = 5. Thus, we move from the ones to the fives.

After the fives, we would move to the 52 place, or the twenty fives.
Note that in base-ten, we would have gone from the tens to the
hundreds, which is, of course, 102.

Let’s take an example and build a table. Consider the number
30412 in base five. We will write this as 304125, where the subscript
5 is not part of the number but indicates the base we’re using. First
off, note that this is NOT the number “thirty thousand, four hundred
twelve.” We must be careful not to impose the base-ten system on
this number. Here’s what our table might look like. We will use it to
convert this number to our more familiar base-ten system.

Base 5 This column coverts to base-ten In Base-Ten

3 × 54 = 3 × 625 = 1875

+ 0 × 53 = 0 × 125 = 0

+ 4 × 52 = 4 × 25 = 100

+ 1 × 51 = 1 × 5 = 5

+ 2 × 50 = 2 × 1 = 2

Total 1982

As you can see, the number 304125 is equivalent to 1,982 in base-ten.
We will say 304125 = 198210. All of this may seem strange to you, but
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that’s only because you are so used to the only system that you’ve
ever seen.

Example 3

Convert 62347 to a base 10 number.

Solution

We first note that we are given a base-7 number that we
are to convert. Thus, our places will start at the ones (70),
and then move up to the 7s, 49s (72), etc. Here’s the
breakdown:

Base 7 Convert Base 10

= 6 × 73 = 6 × 343 = 2058

+ = 2 × 72 = 2 × 49 = 98

+ = 3 × 7 = 3 × 7 = 21

+ = 4 × 1 = 4 × 1 = 4

Total 2181

Thus 62347 = 218110
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Try It Now

Convert 410657 to a base 10 number.

Converting from Base 10 to Other Bases

Converting from an unfamiliar base to the familiar decimal system
is not that difficult once you get the hang of it. It’s only a matter
of identifying each place and then multiplying each digit by the
appropriate power. However, going the other direction can be a
little trickier. Suppose you have a base-ten number and you want to
convert to base-five. Let’s start with some simple examples before
we get to a more complicated one.

Example 4

Convert twelve to a base-five number.

Solution

We can probably easily see that we can rewrite this
number as follows:
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12 = (2 × 5) + (2 × 1)

Hence, we have two fives and 2 ones. Hence, in base-five
we would write twelve as 225. Thus, 1210 =225.

Example 5

Convert sixty-nine to a base-five number.

Solution

We can see now that we have more than 25, so we
rewrite sixty-nine as follows:

69 = (2 × 25) + (3 × 5) + (4 × 1)

Here, we have two twenty-fives, 3 fives, and 4 ones.
Hence, in base five we have 234. Thus, 6910 = 2345.

Example 6

Convert the base-seven number 32617 to base 10.
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Solution

The powers of 7 are:

70 = 1
71 = 7
72 = 49
73 = 343
Etc…

32617 = (3 × 343) + (2 × 49) + (6 × 7) + (1 × 1) =117010.

Thus 32617 = 117010.

Try It Now

Convert 143 to base 5
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Try It Now

Convert the base-three number 210213 to base 10.

In general, when converting from base-ten to some other base, it is
often helpful to determine the highest power of the base that will
divide into the given number at least once.

In the last example, 52 = 25 is the largest power of five that is
present in 69, so that was our starting point. If we had moved to 53

= 125, then 125 would not divide into 69 at least once.

Converting from Base 10 to Base b

1. Find the highest power of the base b that will
divide into the given number at least once and
then divide.

2. Write down the whole number part, then use
the remainder from division in the next step.

3. Repeat step two, dividing by the next highest
power of the base b, writing down the whole
number part (including 0), and using the
remainder in the next step.

4. Continue until the remainder is smaller than the
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base. This last remainder will be in the “ones”
place.

5. Collect all your whole number parts to get your
number in base b notation.

Example 7

Convert the base-ten number 348 to base-five.

Solution

The powers of five are:

50 = 1
51 = 5
52 = 25
53 = 125
54 = 625
Etc…

Since 348 is smaller than 625, but bigger than 125, we see
that 53 = 125 is the highest power of five present in 348. So
we divide 125 into 348 to see how many of them there are:

348 ÷ 125 = 2 with remainder 98

We write down the whole part, 2, and continue with the
remainder. There are 98 left over, so we see how many 25s
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(the next smallest power of five) there are in the remainder:

98 ÷ 25 = 3 with remainder 23

We write down the whole part, 2, and continue with the
remainder. There are 23 left over, so we look at the next
place, the 5s:

23 ÷ 5 = 4 with remainder 3

This leaves us with 3, which is less than our base, so this
number will be in the “ones” place. We are ready to
assemble our base-five number:

348 = (2 × 53) + (3 × 52) + (4 × 51) + (3 × 1)

Hence, our base-five number is 2343. We’ll say that 34810

= 23435.

Example 8

Convert the base-ten number 4,509 to base-seven.

Solution

The powers of 7 are:

70 = 1
71 = 7
72 = 49
73 = 343
74 = 2401
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75 = 16807
Etc…

The highest power of 7 that will divide into 4,509 is 74 =
2401. With division, we see that it will go in 1 time with a
remainder of 2108. So we have 1 in the 74 place.

The next power down is 73 = 343, which goes into 2108 six
times with a new remainder of 50. So we have 6 in the 73

place.

The next power down is 72 = 49, which goes into 50 once
with a new remainder of 1. So there is a 1 in the 72 place.

The next power down is 71 but there was only a
remainder of 1, so that means there is a 0 in the 7s place
and we still have 1 as a remainder.

That, of course, means that we have 1 in the ones place.

Putting all of this together means that 4,50910 = 161017.

4,509 ÷ 74 = 1 R 21082108 ÷ 73 = 6 R 50

50 ÷ 72 = 1 R 1

1 ÷ 71 = 1

4,50910 = 161017.
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Try It Now

Convert 65710 to a base 4 number.

Try It Now

Convert 837710 to a base 8 number.

Another Method For Converting From Base 10 to
Other Bases

As you read the solution to this last example and attempted the “Try
it Now” problems, you may have had to repeatedly stop and think
about what was going on. The fact that you are probably struggling
to follow the explanation and reproduce the process yourself is
mostly due to the fact that the non-decimal systems are so
unfamiliar to you. In fact, the only system that you are probably
comfortable with is the decimal system.

As budding mathematicians, you should always be asking
questions like “How could I simplify this process?” In general, that is
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one of the main things that mathematicians do: they look for ways to
take complicated situations and make them easier or more familiar.
In this section we will attempt to do that.

To do so, we will start by looking at our own decimal system. What
we do may seem obvious and maybe even intuitive but that’s the
point. We want to find a process that we readily recognize works
and makes sense to us in a familiar system and then use it to extend
our results to a different, unfamiliar system.

Let’s start with the decimal number, 486310. We will convert this
number to base 10. Yeah, I know it’s already in base 10, but if you
carefully follow what we’re doing, you’ll see it makes things work out
very nicely with other bases later on. We first note that the highest
power of 10 that will divide into 4863 at least once is 103 = 1000. In
general, this is the first step in our new process; we find the highest
power that a given base that will divide at least once into our given
number.

We now divide 1000 into 4863:
4863 ÷ 1000 = 4.863

This says that there are four thousands in 4863 (obviously).
However, it also says that there are 0.863 thousands in 4863. This
fractional part is our remainder and will be converted to lower
powers of our base (10). If we take that decimal and multiply by 10
(since that’s the base we’re in) we get the following:

0.863 × 10 = 8.63
Why multiply by 10 at this point? We need to recognize here that

0.863 thousands is the same as 8.63 hundreds. Think about that until
it sinks in.

(0.863)(1000) = 863
(8.63)(100) = 863

These two statements are equivalent. So, what we are really doing
here by multiplying by 10 is rephrasing or converting from one place
(thousands) to the next place down (hundreds).

0.863 × 10 ⇒ 8.63
(Parts of Thousands) × 10 ⇒ Hundreds

What we have now is 8 hundreds and a remainder of 0.63
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hundreds, which is the same as 6.3 tens. We can do this again with
the 0.63 that remains after this first step.

0.63 × 10 ⇒ 6.3
Hundreds × 10 ⇒ Tens

So we have six tens and 0.3 tens, which is the same as 3 ones, our
last place value.

Now here’s the punch line. Let’s put all of the together in one
place:

Converting from Base 10 to Base b: Another methodNote that in
each step, the remainder is carried down to the next step and
multiplied by 10, the base. Also, at each step, the whole number part,
which is circled, gives the digit that belongs in that particular place.
What is amazing is that this works for any base! So, to convert from
a base 10 number to some other base, b, we have the following steps
we can follow:

Converting from Base 10 to Base b:
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Another method

1. Find the highest power of the base b that will
divide into the given number at least once and
then divide.

2. Keep the whole number part, and multiply the
fractional part by the base b.

3. Repeat step two, keeping the whole number
part (including 0), carrying the fractional part to
the next step until only a whole number result is
obtained.

4. Collect all your whole number parts to get your
number in base b notation.

We will illustrate this procedure with some examples.

Example 9

Convert the base 10 number, 34810, to base 5.

Solution

This is actually a conversion that we have done in a
previous example. The powers of five are:
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50 = 1
51 = 5
52 = 25
53 = 125
54 = 625
Etc…

The highest power of five that will go into 348 at least
once is 53.

We divide by 125 and then proceed.

By keeping all the whole number parts, from top bottom,
gives 2343 as our base 5 number. Thus, 23435 = 34810.

We can compare our result with what we saw earlier, or
simply check with our calculator, and find that these two
numbers really are equivalent to each other.
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Example 10

Convert the base 10 number, 300710, to base 5.

Solution

The highest power of 5 that divides at least once into
3007 is 54 = 625. Thus, we have:

3007 ÷ 625 = ④.8112
0.8112 × 5 = ④.056
0.056 × 5 = ⓪.28
0.28 × 5 = ①0.4
0.4 × 5 = ②0.0

This gives us that 300710 = 440125. Notice that in the third
line that multiplying by 5 gave us 0 for our whole number
part. We don’t discard that! The zero tells us that a zero in
that place. That is, there are no 52s in this number.

This last example shows the importance of using a calculator in
certain situations and taking care to avoid clearing the calculator’s
memory or display until you get to the very end of the process.

Example 11

Convert the base 10 number, 6320110, to base 7.
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Solution

The powers of 7 are:

70 = 1
71 = 7
72 = 49
73 = 343
74 = 2401
75 = 16807
etc…

The highest power of 7 that will divide at least once into
63201 is 75. When we do the initial division on a calculator,
we get the following:

63201 ÷ 75 = 3.760397453

The decimal part actually fills up the calculators display
and we don’t know if it terminates at some point or perhaps
even repeats down the road. So if we clear our calculator at
this point, we will introduce error that is likely to keep this
process from ever ending. To avoid this problem, we leave
the result in the calculator and simply subtract 3 from this
to get the fractional part all by itself. Do not round off!
Subtraction and then multiplication by seven gives:

63201 ÷ 75 = ƒ③.760397453
0.760397453 × 7 = …⑤.322782174
0.322782174 × 7 =‚ ②.259475219
0.259475219 × 7 =? ①.816326531
0.816326531 × 7 = ⑤….714285714
0.714285714 × 7 = …⑤.000000000
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Yes, believe it or not, that last product is exactly 5, as long
as you don’t clear anything out on your calculator. This gives
us our final result: 6320110 = 3521557.

If we round, even to two decimal places in each step,
clearing our calculator out at each step along the way, we
will get a series of numbers that do not terminate, but
begin repeating themselves endlessly. (Try it!) We end up
with something that doesn’t make any sense, at least not in
this context. So be careful to use your calculator cautiously
on these conversion problems.

Also, remember that if your first division is by 75, then
you expect to have 6 digits in the final answer,
corresponding to the places for 75, 74, and so on down to 70.
If you find yourself with more than 6 digits due to rounding
errors, you know something went wrong.

Try It Now

Convert the base 10 number, 935210, to base 5.
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Try It Now

Convert the base 10 number, 1500, to base 3.

Be careful not to clear your calculator on this one.
Also, if you’re not careful in each step, you may not get
all of the digits you’re looking for, so move slowly and
with caution.

The Mayan Numeral System

Background

As you might imagine, the development of a base system is an
important step in making the counting process more efficient. Our
own base-ten system probably arose from the fact that we have
10 fingers (including thumbs) on two hands. This is a natural
development. However, other civilizations have had a variety of
bases other than ten. For example, the Natives of Queensland used
a base-two system, counting as follows: “one, two, two and one, two
two’s, much.” Some Modern South American Tribes have a base-five
system counting in this way: “one, two, three, four, hand, hand and
one, hand and two,” and so on. The Babylonians used a base-sixty
(sexigesimal) system. In this chapter, we wrap up with a specific
example of a civilization that actually used a base system other than
10.
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The Mayan civilization is generally dated from 1500 BCE to 1700 CE.
The Yucatan Peninsula (see figure 1629) in Mexico was the scene for
the development of one of the most advanced civilizations of the
ancient world. The Mayans had a sophisticated ritual system that
was overseen by a priestly class. This class of priests developed a

29. http://www.gorp.com/gorp/location/latamer/
map_maya.htm
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philosophy with time as divine and eternal.30 The calendar, and
calculations related to it, were thus very important to the ritual life
of the priestly class, and hence the Mayan people. In fact, much of
what we know about this culture comes from their calendar records
and astronomy data. Another important source of information on
the Mayans is the writings of Father Diego de Landa, who went to
Mexico as a missionary in 1549.

There were two numeral systems
developed by the Mayans—one for the common people and one for
the priests. Not only did these two systems use different symbols,
they also used different base systems. For the priests, the number
system was governed by ritual. The days of the year were thought
to be gods, so the formal symbols for the days were decorated
heads,31 like the sample to the left32 Since the basic calendar was
based on 360 days, the priestly numeral system used a mixed base
system employing multiples of 20 and 360. This makes for a
confusing system, the details of which we will skip.

30. Bidwell, James; Mayan Arithmetic in Mathematics
Teacher, Issue 74 (Nov., 1967), p. 762–68.

31. http://www.ukans.edu/~lctls/Mayan/numbers.html
32. http://www.ukans.edu/~lctls/Mayan/numbers.html
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Powers Base-Ten Value Place Name

207 12,800,000,000 Hablat

206 64,000,000 Alau

205 3,200,000 Kinchil

204 160,000 Cabal

203 8,000 Pic

202 400 Bak

201 20 Kal

200 1 Hun

The Mayan Number System

Instead, we will focus on the numeration system of the “common”
people, which used a more consistent base system. As we stated
earlier, the Mayans used a base-20 system, called the “vigesimal”
system. Like our system, it is positional, meaning that the position
of a numeric symbol indicates its place value. In the following table
you can see the place value in its vertical format.33

33. Bidwell
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In order to write numbers down, there were only three symbols
needed in this system. A horizontal bar represented the quantity 5, a
dot represented the quantity 1, and a special symbol (thought to be
a shell) represented zero. The Mayan system may have been the first
to make use of zero as a placeholder/number. The first 20 numbers
are shown in the table to the right.34

Unlike our system, where the ones place starts on the right and
then moves to the left, the Mayan systems places the ones on the
bottom of a vertical orientation and moves up as the place value
increases.

When numbers are written in vertical form, there should never
be more than four dots in a single place. When writing Mayan
numbers, every group of five dots becomes one bar. Also, there
should never be more than three bars in a single place…four bars
would be converted to one dot in the next place up. It’s the same
as 10 getting converted to a 1 in the next place up when we carry
during addition.

Example 12

What is the value of this number, which is shown in
vertical form?

34. http://www.vpds.wsu.edu/fair_95/gym/UM001.html
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Solution

Starting from the bottom, we have the ones place. There
are two bars and three dots in this place. Since each bar is
worth 5, we have 13 ones when we count the three dots in
the ones place. Looking to the place value above it (the
twenties places), we see there are three dots so we have
three twenties.

Hence we can write this number in base-ten as:

(3 × 201) + (13 × 200) = (3 × 201) + (13 × 1) = 60 + 13 = 73

Example 13

What is the value of the following Mayan number?
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Solution

This number has 11 in the ones place, zero in the 20s
place, and 18 in the 202 = 400s place. Hence, the value of
this number in base-ten is:

18 × 400 + 0 × 20 + 11 × 1 = 7211.

Try It Now

Convert the Mayan number below to base 10.
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Example 14

Convert the base 10 number 357510 to Mayan numerals.

This problem is done in two stages. First we need to
convert to a base 20 number. We will do so using the
method provided in the last section of the text. The second
step is to convert that number to Mayan symbols.

The highest power of 20 that will divide into 3575 is 202 =
400, so we start by dividing that and then proceed from
there:

3575 ÷ 400 = 8.9375
0.9375 × 20 = 18.75
0.75 × 20 = 15.0

This means that 357510 = 8,18,1520

The second step is to convert this to Mayan notation.
This number indicates that we have 15 in the ones position.
That’s three bars at the bottom of the number. We also have
18 in the 20s place, so that’s three bars and three dots in the
second position. Finally, we have 8 in the 400s place, so
that’s one bar and three dots on the top. We get the
following:

Note that in the previous example a new notation was used when we
wrote 8,18,1520. The commas between the three numbers 8, 18, and
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15 are now separating place values for us so that we can keep them
separate from each other. This use of the comma is slightly different
than how they’re used in the decimal system. When we write a
number in base 10, such as 7,567,323, the commas are used primarily
as an aide to read the number easily but they do not separate single
place values from each other. We will need this notation whenever
the base we use is larger than 10.

Writing numbers with bases bigger than
10

When the base of a number is larger than 10, separate
each “digit” with a comma to make the separation of
digits clear.

For example, in base 20, to write the number
corresponding to 17 × 202 + 6 × 201 + 13 × 200, we’d write
17,6,1320.

Try It Now

Convert the base 10 number 1055310 to Mayan
numerals.
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Try It Now

Convert the base 10 number 561710 to Mayan
numerals.

Adding Mayan Numbers

When adding Mayan numbers together, we’ll adopt a scheme that
the Mayans probably did not use but which will make life a little
easier for us.

Example 15

Add, in Mayan, the numbers 37 and 29:35

35. http://forum.swarthmore.edu/k12/mayan.math/
mayan2.html
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First draw a box around each of the vertical places. This
will help keep the place values from being mixed up.

Next, put all of the symbols from both numbers into a
single set of places (boxes), and to the right of this new
number draw a set of empty boxes where you will place the
final sum:

You are now ready to start carrying. Begin with the place
that has the lowest value, just as you do with Arabic
numbers. Start at the bottom place, where each dot is
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worth 1. There are six dots, but a maximum of four are
allowed in any one place; once you get to five dots, you
must convert to a bar. Since five dots make one bar, we
draw a bar through five of the dots, leaving us with one dot
which is under the four-dot limit. Put this dot into the
bottom place of the empty set of boxes you just drew:

Now look at the bars in the bottom place. There are five,
and the maximum number the place can hold is three. Four
bars are equal to one dot in the next highest place.

Whenever we have four bars in a single place we will
automatically convert that to a dot in the next place up. We
draw a circle around four of the bars and an arrow up to
the dots’ section of the higher place. At the end of that
arrow, draw a new dot. That dot represents 20 just the
same as the other dots in that place. Not counting the
circled bars in the bottom place, there is one bar left. One
bar is under the three-bar limit; put it under the dot in the
set of empty places to the right.
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Now there are only three dots in the next highest place,
so draw them in the corresponding empty box.

We can see here that we have 3 twenties (60), and 6 ones,
for a total of 66. We check and note that 37 + 29 = 66, so we
have done this addition correctly. Is it easier to just do it in
base-ten? Probably, but that’s only because it’s more
familiar to you. Your task here is to try to learn a new base
system and how addition can be done in slightly different
ways than what you have seen in the past. Note, however,
that the concept of carrying is still used, just as it is in our
own addition algorithm.
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Try It Now

Try adding 174 and 78 in Mayan by first converting to
Mayan numbers and then working entirely within that
system. Do not add in base-ten (decimal) until the very
end when you check your work.

Conclusion

In this reading, we have briefly sketched the development of
numbers and our counting system, with the emphasis on the “brief”
part. There are numerous sources of information and research that
fill many volumes of books on this topic. Unfortunately, we cannot
begin to come close to covering all of the information that is out
there.

We have only scratched the surface of the wealth of research
and information that exists on the development of numbers and
counting throughout human history. What is important to note is
that the system that we use every day is a product of thousands of
years of progress and development. It represents contributions by
many civilizations and cultures. It does not come down to us from
the sky, a gift from the gods. It is not the creation of a textbook
publisher. It is indeed as human as we are, as is the rest of
mathematics. Behind every symbol, formula and rule there is a
human face to be found, or at least sought.

Furthermore, we hope that you now have a basic appreciation
for just how interesting and diverse number systems can get. Also,
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we’re pretty sure that you have also begun to recognize that we take
our own number system for granted so much that when we try to
adapt to other systems or bases, we find ourselves truly having to
concentrate and think about what is going on.
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7. Supplemental Videos

This YouTube playlist contains
several videos that supplement the reading on Historical Counting.

You are not required to watch all of these videos, but I
recommend watching the videos for any concepts you may be
struggling with.
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PART V

MODULE 4: PROBABILITY
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8. Calculating the Odds of an
Event

Here you’ll calculate odds by using outcomes or probability. Have
you ever thought about the likelihood of an event happening? Take
a look at this dilemma:

Telly and
Carey were already hard at work when Ms. Kelley came into the bike
shop on Thursday morning. It was three days before the big race
and there was still a lot of work to be done.

“I can’t believe it!” Ms. Kelley exclaimed as she came into the shop.
“What?” both girl asked alarmed.
“There is a 4 to 5 chance that it is going to rain on Saturday. I just

heard the weather report,” Ms. Kelley said sighing.
“Well, there is still a chance that it won’t,” Telly said trying to cheer

her up.
When we think about chances and odds, we can calculate the

likelihood that an event will or won’t occur. In this case, there are
odds that it will rain and odds that it won’t. We can also express
those odds as a fraction or a percentage. Learn about odds in this
reading, and you can work on the odds of the rainstorm at the end.
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Guidance

You’ve seen that the probability of an event is defined as a ratio that
compares the favorable out comes to the total outcomes. We can
write this ratio in fraction form.

Sometimes people express the likelihood of events in terms of
odds rather than probabilities. The odds of an event occurring are
equal to the ratio of favorable outcomes to unfavorable outcomes.

Think about the odds for the arrow of the spinner above landing
on red:

• favorable outcomes = 1(red)
• unfavorable outcomes = 2(blue, yellow)
• total outcomes = 3

So the probability of spinning red is:
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While the odds in favor of red are:

Odds against an event occurring are defined as:

You can solve any probability problem in terms of odds rather
than probabilities. Notice that the ratio represents what is being
compared. Be sure that your numbers match the comparison.

We can use odds to calculate how likely an event is to happen. We
can compare the odds in favor of an event with the probability that
the event will actually occur. Let’s look at an example.

Take a look at this situation.
You’ve seen that the odds in favor of an event (E) occurring are

shown in this ratio.

And the odds against the same event occurring are:

You can use these two facts to compute the ratio of things
happening and not happening.

For
example, suppose the weather forecast states:

Odds in favor of rain: 7 to 3
These odds tell you not only the odds of rain, but also the odds of

not raining.
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If the odds in favor or rain are 7 to 3, then the odds against rain
are:

Odds against rain: 3 to 7
Another way of saying that is:

Odds that it will NOT rain: 3 to 7
You can use this idea in many different situations. If you know the

odds that something will happen, then you also know the odds that
it will not happen.

Use this spinner to calculate odds.

Example A

Odds in favor of spinning a blue.
Solution:
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Example B

Odds in favor of spinning a red or blue.
Solution:

Example C

Odds against spinning a red or blue.
Solution:

Intro Problem Revisited

Now let’s go back to the dilemma from the beginning of the reading.
Answer all three questions.
What are the chances that it won’t rain? We know that the odds

of it raining is 4 to 5. Therefore it is a 1 out of 5 chance that it won’t
rain. Not very good odds.

What are the odds that it will as a percentage? 4 to 5 can be
written as a percentage: 80% chance of rain.

What are the odds that it won’t as a percentage? 1 to 5 can be
written as a percentage: 20% chance that it won’t rain.

Guided Practice

Here is one for you to try on your own.
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What are the odds in favor of a number cube landing on
4?

Step 1

Find the favorable and unfavorable outcomes.

• favorable outcomes = 1(4)
• unfavorable outcomes = 5(1,2,3,5,6)

Step 2

Write the ratio of favorable to unfavorable outcomes.

The odds in favor of rolling a 4 are 1 to 5.

Vocabulary

Disjoint events: events that don’t have any outcomes
in common.

Complementary events: probability that has a sum of
100%. Either/Or events are complementary events.
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Watch This: Video Review

A YouTube element has been excluded from this

version of the text. You can view it online here:

https://library.achievingthedream.org/

hostosintrocollegemath/?p=29

Practice Questions

Solve the problems.

1. For rolling a number cube, what are the odds in favor of rolling
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a 2?
2. For rolling a number cube, what are the odds against rolling a

2?
3. For rolling a number cube, what are the odds in favor of rolling

a number greater than 3?
4. For rolling a number cube, what are the odds in favor rolling a

number less than 5?
5. For rolling a number cube, what are the odds against rolling a

number less than 5?
6. For rolling a number cube, what are the odds in favor of rolling

an even number?
7. For rolling a number cube, what are the odds against rolling an

even number?

For a spinner numbered 1 –10, answer the following questions.

1. For spinning the spinner, what are the odds in favor of the
arrow landing on 10?

2. For spinning the spinner, what are the odds in favor of the
arrow landing on a 2 or 3?

3. For spinning the spinner, what are the odds in favor of the
arrow landing on 7, 8 or 9?

4. For spinning the spinner, what are the odds in favor of NOT
landing on an even number?

5. For spinning the spinner, what are the odds of the arrow NOT
landing on 10?

6. For spinning the spinner, what are the odds in favor of the
arrow landing on a number greater than 2?

7. For spinning the spinner, what are the odds in favor of the
arrow NOT landing on a number greater than 2?

8. For spinning the spinner, what are the odds of the arrow not
landing on a number greater than 3?
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9. Probability Reading II

We can use permutations and combinations to help us answer more
complex probability questions

Example 1

A 4 digit PIN is selected. What is the probability that
there are no repeated digits?

There are 10 possible values for each digit of the PIN
(namely: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), so there are 10 × 10 × 10 × 10
= 104 = 10000 total possible PINs.

To have no repeated digits, all four digits would have to
be different, which is selecting without replacement. We
could either compute 10 × 9 × 8 × 7, or notice that this is the
same as the permutation 10P4 = 5040.

The probability of no repeated digits is the number of 4
digit PINs with no repeated digits divided by the total
number of 4 digit PINs. This probability is
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Example 2

In a certain state’s lottery, 48 balls numbered 1 through
48 are placed in a machine and six of them are drawn at
random. If the six numbers drawn match the numbers that
a player had chosen, the player wins $1,000,000. In this
lottery, the order the numbers are drawn in doesn’t matter.
Compute the probability that you win the million-dollar
prize if you purchase a single lottery ticket.

In order to compute the probability, we need to count the
total number of ways six numbers can be drawn, and the
number of ways the six numbers on the player’s ticket
could match the six numbers drawn from the machine.
Since there is no stipulation that the numbers be in any
particular order, the number of possible outcomes of the
lottery drawing is 48C6 = 12,271,512. Of these possible
outcomes, only one would match all six numbers on the
player’s ticket, so the probability of winning the grand prize
is:

Example 3

In the state lottery from the previous example, if five of
the six numbers drawn match the numbers that a player
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has chosen, the player wins a second prize of $1,000.
Compute the probability that you win the second prize if
you purchase a single lottery ticket.

As above, the number of possible outcomes of the lottery
drawing is 48C6 = 12,271,512. In order to win the second
prize, five of the six numbers on the ticket must match five
of the six winning numbers; in other words, we must have
chosen five of the six winning numbers and one of the 42
losing numbers. The number of ways to choose 5 out of the
6 winning numbers is given by 6C5 = 6 and the number of
ways to choose 1 out of the 42 losing numbers is given by
42C1 = 42. Thus the number of favorable outcomes is then
given by the Basic Counting Rule: 6C5 × 42C1 = 6 × 42 = 252.
So the probability of winning the second prize is

Try it Now

A multiple-choice question on an economics quiz
contains 10 questions with five possible answers each.
Compute the probability of randomly guessing the
answers and getting 9 questions correct.
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Example 4

Compute the probability of randomly drawing five cards
from a deck and getting exactly one Ace.

In many card games (such as poker) the order in which
the cards are drawn is not important (since the player may
rearrange the cards in his hand any way he chooses); in the
problems that follow, we will assume that this is the case
unless otherwise stated. Thus we use combinations to
compute the possible number of 5-card hands, 52C5. This
number will go in the denominator of our probability
formula, since it is the number of possible outcomes.

For the numerator, we need the number of ways to draw
one Ace and four other cards (none of them Aces) from the
deck. Since there are four Aces and we want exactly one of
them, there will be 4C1 ways to select one Ace; since there
are 48 non-Aces and we want 4 of them, there will be 48C4

ways to select the four non-Aces. Now we use the Basic
Counting Rule to calculate that there will be 4C1 × 48C4 ways
to choose one ace and four non-Aces.

Putting this all together, we have
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Example 5

Compute the probability of randomly drawing five cards
from a deck and getting exactly two Aces.

The solution is similar to the previous example, except
now we are choosing 2 Aces out of 4 and 3 non-Aces out of
48; the denominator remains the same:

It is useful to note that these card problems are remarkably similar
to the lottery problems discussed earlier.

Try it Now

Compute the probability of randomly drawing five
cards from a deck of cards and getting three Aces and
two Kings.
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Birthday Problem

Let’s take a pause to consider a famous problem in probability
theory:

Suppose you have a room full of 30 people. What is the
probability that there is at least one shared birthday?

Take a guess at the answer to the above problem. Was your guess
fairly low, like around 10%? That seems to be the intuitive answer
(30/365, perhaps?). Let’s see if we should listen to our intuition.
Let’s start with a simpler problem, however.

Example 6

Suppose three people are in a room. What is the
probability that there is at least one shared birthday among
these three people?

There are a lot of ways there could be at least one shared
birthday. Fortunately there is an easier way. We ask
ourselves “What is the alternative to having at least one
shared birthday?” In this case, the alternative is that there
are no shared birthdays. In other words, the alternative to
“at least one” is having none. In other words, since this is a
complementary event,

P(at least one) = 1 – P(none)

We will start, then, by computing the probability that
there is no shared birthday. Let’s imagine that you are one
of these three people. Your birthday can be anything
without conflict, so there are 365 choices out of 365 for
your birthday. What is the probability that the second
person does not share your birthday? There are 365 days in
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the year (let’s ignore leap years) and removing your
birthday from contention, there are 364 choices that will
guarantee that you do not share a birthday with this
person, so the probability that the second person does not
share your birthday is 364/365. Now we move to the third
person. What is the probability that this third person does
not have the same birthday as either you or the second
person? There are 363 days that will not duplicate your
birthday or the second person’s, so the probability that the
third person does not share a birthday with the first two is
363/365.

We want the second person not to share a birthday with
you and the third person not to share a birthday with the
first two people, so we use the multiplication rule:

and then subtract from 1 to get

P(shared birthday) = 1 – P(no shared birthday) = 1 – 0.9918
= 0.0082.

This is a pretty small number, so maybe it makes sense that the
answer to our original problem will be small. Let’s make our group a
bit bigger.

Example 7

Suppose five people are in a room. What is the
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probability that there is at least one shared birthday among
these five people?

Continuing the pattern of the previous example, the
answer should be

Note that we could rewrite this more compactly as

which makes it a bit easier to type into a calculator or
computer, and which suggests a nice formula as we
continue to expand the population of our group.

Example 8

Suppose 30 people are in a room. What is the probability
that there is at least one shared birthday among these 30
people?

Here we can calculate

which gives us the surprising result that when you are in
a room with 30 people there is a 70% chance that there will
be at least one shared birthday!

If you like to bet, and if you can convince 30 people to reveal their
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birthdays, you might be able to win some money by betting a friend
that there will be at least two people with the same birthday in the
room anytime you are in a room of 30 or more people. (Of course,
you would need to make sure your friend hasn’t studied probability!)
You wouldn’t be guaranteed to win, but you should win more than
half the time.

This is one of many results in probability theory that is
counterintuitive; that is, it goes against our gut instincts. If you
still don’t believe the math, you can carry out a simulation. Just
so you won’t have to go around rounding up groups of 30 people,
someone has kindly developed a Java applet so that you can conduct
a computer simulation. Go to this web page, and once the applet has
loaded, select 30 birthdays and then keep clicking Start and Reset.
If you keep track of the number of times that there is a repeated
birthday, you should get a repeated birthday about 7 out of every 10
times you run the simulation.

Try it Now

Suppose 10 people are in a room. What is the
probability that there is at least one shared birthday
among these 10 people?
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Expected Value

Expected value is
perhaps the most useful probability concept we will discuss. It has
many applications, from insurance policies to making financial
decisions, and it’s one thing that the casinos and government
agencies that run gambling operations and lotteries hope most
people never learn about.

Example 9

In the casino game roulette, a wheel with 38 spaces (18
red, 18 black, and 2 green) is spun. In one possible bet, the
player bets $1 on a single number. If that number is spun on
the wheel, then they receive $36 (their original $1 + $35).
Otherwise, they lose their $1. On average, how much money
should a player expect to win or lose if they play this game
repeatedly?

Suppose you bet $1 on each of the 38 spaces on the
wheel, for a total of $38 bet. When the winning number is
spun, you are paid $36 on that number. While you won on
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that one number, overall you’ve lost $2. On a per-space
basis, you have “won”—$2/$38 ≈ –$0.053. In other words,
on average you lose 5.3 cents per space you bet on.

We call this average gain or loss the expected value of playing
roulette. Notice that no one ever loses exactly 5.3 cents: most
people (in fact, about 37 out of every 38) lose $1 and a very few
people (about 1 person out of every 38) gain $35 (the $36 they win
minus the $1 they spent to play the game).

There is another way to compute expected value without
imagining what would happen if we play every possible space. There
are 38 possible outcomes when the wheel spins, so the probability

of winning is . The complement, the probability of losing, is

.

Summarizing these along with the values, we get this table:

Outcome Probability of outcome

$35

–$1

Notice that if we multiply each outcome by its corresponding

probability we get $35 × = 0.9211 and –$1 × = –0.9737, and

if we add these numbers we get 0.9211 + (–0.9737) ≈ –0.053, which is
the expected value we computed above.
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Expected Value

Expected Value is the average gain or loss of an event
if the procedure is repeated many times.

We can compute the expected value by multiplying
each outcome by the probability of that outcome, then
adding up the products.

Try it Now

You purchase a raffle ticket to help out a charity. The
raffle ticket costs $5. The charity is selling 2000 tickets.
One of them will be drawn and the person holding the
ticket will be given a prize worth $4000. Compute the
expected value for this raffle.

Example 10

In a certain state’s lottery, 48 balls numbered 1 through

170 | Probability Reading II



48 are placed in a machine and six of them are drawn at
random. If the six numbers drawn match the numbers that
a player had chosen, the player wins $1,000,000. If they
match 5 numbers, then win $1,000. It costs $1 to buy a
ticket. Find the expected value.

Earlier, we calculated the probability of matching all 6
numbers and the probability of matching 5 numbers:

for all

6 numbers,

for 5 numbers.

Our probabilities and outcome values are:

Outcome Probability of outcome

$999,999

$999

–$1

The expected value, then is:

On average, one can expect to lose about 90 cents on a
lottery ticket. Of course, most players will lose $1.
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In general, if the expected value of a game is negative, it is not a
good idea to play the game, since on average you will lose money.
It would be better to play a game with a positive expected value
(good luck trying to find one!), although keep in mind that even
if the average winnings are positive it could be the case that most
people lose money and one very fortunate individual wins a great
deal of money. If the expected value of a game is 0, we call it a fair
game, since neither side has an advantage.

Not surprisingly, the expected value for casino games is negative
for the player, which is positive for the casino. It must be positive or
they would go out of business. Players just need to keep in mind that
when they play a game repeatedly, their expected value is negative.
That is fine so long as you enjoy playing the game and think it is
worth the cost. But it would be wrong to expect to come out ahead.

Try it Now

A friend offers to play a game, in which you roll 3
standard 6-sided dice. If all the dice roll different values,
you give him $1. If any two dice match values, you get $2.
What is the expected value of this game? Would you
play?

Expected value also has applications outside of gambling. Expected
value is very common in making insurance decisions.
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Example 11

According to the estimator at numericalexample.com, a
40-year-old man in the US has a 0.242% risk of dying
during the next year. An insurance company charges $275
for a life-insurance policy that pays a $100,000 death
benefit. What is the expected value for the person buying
the insurance?

The probabilities and outcomes are

Outcome Probability of outcome

$100,000 – $275 = $99,725 0.00242

–$275 1 – 0.00242 = 0.99758

The expected value is ($99,725)(0.00242) +
(–$275)(0.99758) = –$33.

Not surprisingly, the expected value is negative; the insurance
company can only afford to offer policies if they, on average, make
money on each policy. They can afford to pay out the occasional
benefit because they offer enough policies that those benefit
payouts are balanced by the rest of the insured people.

For people buying the insurance, there is a negative expected
value, but there is a security that comes from insurance that is
worth that cost.
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10. Probability Reading I

Introduction

The probability of a specified event is the chance or likelihood that
it will occur. There are several ways of viewing probability. One
would be experimental in nature, where we repeatedly conduct an
experiment. Suppose we flipped a coin over and over and over again
and it came up heads about half of the time; we would expect that
in the future whenever we flipped the coin it would turn up heads
about half of the time. When a weather reporter says “there is a 10%
chance of rain tomorrow,” she is basing that on prior evidence; that
out of all days with similar weather patterns, it has rained on 1 out
of 10 of those days.

Another view would be subjective in nature, in other words an
educated guess. If someone asked you the probability that the
Seattle Mariners would win their next baseball game, it would be
impossible to conduct an experiment where the same two teams
played each other repeatedly, each time with the same starting
lineup and starting pitchers, each starting at the same time of day
on the same field under the precisely the same conditions. Since
there are so many variables to take into account, someone familiar
with baseball and with the two teams involved might make an
educated guess that there is a 75% chance they will win the game;
that is, if the same two teams were to play each other repeatedly
under identical conditions, the Mariners would win about three out
of every four games. But this is just a guess, with no way to verify its
accuracy, and depending upon how educated the educated guesser
is, a subjective probability may not be worth very much.

We will return to the experimental and subjective probabilities
from time to time, but in this course we will mostly be concerned
with theoretical probability, which is defined as follows: Suppose
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there is a situation with n equally likely possible outcomes and
that m of those n outcomes correspond to a particular event; then

the probability of that event is defined as .

Basic Concepts

If you roll a die, pick a card from deck of playing cards, or randomly
select a person and observe their hair color, we are executing an
experiment or procedure. In probability, we look at the likelihood of
different outcomes. We begin with some terminology.

Events and Outcomes

The result of an experiment is called an outcome.

An event is any particular outcome or group of
outcomes.

A simple event is an event that cannot be broken
down further

The sample space is the set of all possible simple
events.
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Example 1

If we roll a standard 6-sided die, describe the sample
space and some simple events.

Solution

The sample space is the set of all possible simple events:
{1,2,3,4,5,6}

Some examples of simple events:

• We roll a 1
• We roll a 5

Some compound events:

• We roll a number bigger than 4
• We roll an even number
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Basic Probability

Given that all outcomes are equally likely, we can
compute the probability of an event E using this
formula:

Example 2

If we roll a 6-sided die, calculate

1. P(rolling a 1)
2. P(rolling a number bigger than 4)

Solution

Recall that the sample space is {1,2,3,4,5,6}

1. There is one outcome corresponding to “rolling a 1,”

so the probability is

2. There are two outcomes bigger than a 4, so the
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probability is

Probabilities are essentially fractions, and can be reduced to lower
terms like fractions.

Example 3

Let’s say you have a bag with 20 cherries, 14 sweet and 6
sour. If you pick a cherry at random, what is the probability
that it will be sweet?

Solution

There are 20 possible cherries that could be picked, so
the number of possible outcomes is 20. Of these 20
possible outcomes, 14 are favorable (sweet), so the

probability that the cherry will be sweet is .

There is one potential complication to this example, however. It
must be assumed that the probability of picking any of the cherries
is the same as the probability of picking any other. This wouldn’t be
true if (let us imagine) the sweet cherries are smaller than the sour
ones. (The sour cherries would come to hand more readily when you
sampled from the bag.) Let us keep in mind, therefore, that when we
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assess probabilities in terms of the ratio of favorable to all potential
cases, we rely heavily on the assumption of equal probability for all
outcomes.

Try it Now

At some random moment, you look at your clock and
note the minutes reading.

1. What is probability the minutes reading is 15?
2. What is the probability the minutes reading is 15

or less?

Cards

A standard deck of 52 playing cards consists of
four suits (hearts, spades, diamonds and clubs). Spades
and clubs are black while hearts and diamonds are red.
Each suit contains 13 cards, each of a different rank: an
Ace (which in many games functions as both a low card
and a high card), cards numbered 2 through 10, a Jack, a
Queen and a King.
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Example 4

Compute the probability of randomly drawing one card
from a deck and getting an Ace.

Solution

There are 52 cards in the deck and 4 Aces so

We can also think of probabilities as percents: There is a
7.69% chance that a randomly selected card will be an Ace.

Notice that the smallest possible probability is 0—if there are no
outcomes that correspond with the event. The largest possible
probability is 1—if all possible outcomes correspond with the event.

Certain and Impossible Events

An impossible event has a probability of 0.

A certain event has a probability of 1.
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The probability of any event must be

In the course of this chapter, if you compute a probability and get an
answer that is negative or greater than 1, you have made a mistake
and should check your work.

Working with Events

Complementary Events

Now let us examine the probability that an event does not happen.
As in the previous section, consider the situation of rolling a six-
sided die and first compute the probability of rolling a six: the

answer is P(six) = . Now consider the probability that we

do not roll a six: there are 5 outcomes that are not a six, so the

answer is P(not a six) = . Notice that

This is not a coincidence. Consider a generic situation
with n possible outcomes and an event E that corresponds to m of
these outcomes. Then the remaining n – m outcomes correspond
to E not happening, thus
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Complement of an Event

The complement of an event is the event “E doesn’t
happen”

The notation is used for the complement of
event E.

We can compute the probability of the complement
using

Notice also that

Example 5

If you pull a random card from a deck of playing cards,
what is the probability it is not a heart?

Solution

There are 13 hearts in the deck, so

.

The probability of not drawing a heart is the complement:

182 | Probability Reading I



Probability of Two Independent Events

Example 6

Suppose we flipped a coin and rolled a die, and wanted to
know the probability of getting a head on the coin and a 6
on the die.

Solution

We could list all possible outcomes:
{H1,H2,H3,H4,H5,H6,T1,T2,T3,T4,T5,T6}.

Notice there are 2 · 6 = 12 total outcomes. Out of these,

only 1 is the desired outcome, so the probability is .

The prior example was looking at two independent events.
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Independent Events

Events A and B are independent events if the
probability of Event B occurring is the same whether or
not Event A occurs.

Example 7

Are these events independent?

1. A fair coin is tossed two times. The two events are
(1) first toss is a head and (2) second toss is a head.

2. The two events (1) “It will rain tomorrow in
Houston” and (2) “It will rain tomorrow in Galveston”
(a city near Houston).

3. You draw a card from a deck, then draw a second
card without replacing the first.

Solution

1. The probability that a head comes up on the second
toss is 1/2 regardless of whether or not a head came
up on the first toss, so these events are independent.

2. These events are not independent because it is
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more likely that it will rain in Galveston on days it
rains in Houston than on days it does not.

3. The probability of the second card being red
depends on whether the first card is red or not, so
these events are not independent.

When two events are independent, the probability of both occurring
is the product of the probabilities of the individual events.

P(A and B) for Independent Events

If events A and B are independent, then the
probability of both A and B occurring is

P(A and B) = P(A) · P(B)

where P(A and B) is the probability of
events A and B both occurring, P(A) is the probability of
event A occurring, and P(B) is the probability of
event B occurring

If you look back at the coin and die example from earlier, you can
see how the number of outcomes of the first event multiplied by
the number of outcomes in the second event multiplied to equal the
total number of possible outcomes in the combined event.
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Example 8

In your drawer you have 10 pairs of socks, 6 of which are
white, and 7 tee shirts, 3 of which are white. If you
randomly reach in and pull out a pair of socks and a tee
shirt, what is the probability both are white?

Solution

The probability of choosing a white pair of socks is .

The probability of choosing a white tee shirt is .

The probability of both being white is

.

Try it Now

A card is pulled a deck of cards and noted. The card is
then replaced, the deck is shuffled, and a second card is
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removed and noted. What is the probability that both
cards are Aces?

The previous examples looked at the probability of both events
occurring. Now we will look at the probability of either event
occurring.

Example 9

Suppose we flipped a coin and rolled a die, and wanted to
know the probability of getting a head on the coin or a 6 on
the die.

Solution

Here, there are still 12 possible outcomes:
{H1,H2,H3,H4,H5,H6,T1,T2,T3,T4,T5,T6}

By simply counting, we can see that 7 of the outcomes
have a head on the coin or a 6 on the die or both—we
use or inclusively here (these 7 outcomes are H1, H2, H3,

H4, H5, H6, T6), so the probability is . How could we

have found this from the individual probabilities?

As we would expect, of these outcomes have a head,
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and of these outcomes have a 6 on the die. If we add

these, , which is not

the correct probability. Looking at the outcomes we can see
why: the outcome H6 would have been counted twice,
since it contains both a head and a 6; the probability of

both a head and rolling a 6 is .

If we subtract out this double count, we have the correct

probability: .

P(A or B)

The probability of either A or B occurring (or both) is

P(A or B) = P(A) + P(B) – P(A and B)
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Example 10

Suppose we draw one card from a standard deck. What is
the probability that we get a Queen or a King?

There are 4 Queens and 4 Kings in the deck, hence 8
outcomes corresponding to a Queen or King out of 52
possible outcomes. Thus the probability of drawing a
Queen or a King is:

Note that in this case, there are no cards that are both a
Queen and a King, so .

Using our probability rule, we could have said:

In the last example, the events were mutually exclusive, so P(A or B)
= P(A) + P(B).

Example 11

Suppose we draw one card from a standard deck. What is
the probability that we get a red card or a King?

Half the cards are red, so
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There are four kings, so

There are two red kings, so

We can then calculate

Try it Now

In your drawer you have 10 pairs of socks, 6 of which
are white, and 7 tee shirts, 3 of which are white. If you
reach in and randomly grab a pair of socks and a tee
shirt, what the probability at least one is white?

Example 12

The table below shows the number of survey subjects
who have received and not received a speeding ticket in the
last year, and the color of their car. Find the probability that
a randomly chosen person:
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1. Has a red car and got a speeding ticket
2. Has a red car or got a speeding ticket.

Solution

Speeding
Ticket

No Speeding
Ticket

Tota
l

Red car 15 135 150

Not red
car 45 470 515

Total 60 605 665

We can see that 15 people of the 665 surveyed had both a
red car and got a speeding ticket, so the probability is

.

Notice that having a red car and getting a speeding ticket
are not independent events, so the probability of both of
them occurring is not simply the product of probabilities of
each one occurring.

We could answer this question by simply adding up the
numbers: 15 people with red cars and speeding tickets + 135
with red cars but no ticket + 45 with a ticket but no red car

= 195 people. So the probability is .

We also could have found this probability by: P(had a red
car) + P(got a speeding ticket) – P(had a red car and got a

speeding ticket) = .
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Conditional Probability

Often it is required to compute the probability of an event given that
another event has occurred.

Example 13

What is the probability that two cards drawn at random
from a deck of playing cards will both be aces?

It might seem that you could use the formula for the
probability of two independent events and simply multiply

. This would be incorrect, however,

because the two events are not independent. If the first
card drawn is an ace, then the probability that the second
card is also an ace would be lower because there would
only be three aces left in the deck.

Once the first card chosen is an ace, the probability that
the second card chosen is also an ace is called
the conditional probability of drawing an ace. In this case
the “condition” is that the first card is an ace. Symbolically,
we write this as: P(ace on second draw | an ace on the first
draw).

The vertical bar “|” is read as “given,” so the above
expression is short for “The probability that an ace is drawn
on the second draw given that an ace was drawn on the
first draw.” What is this probability? After an ace is drawn
on the first draw, there are 3 aces out of 51 total cards left.
This means that the conditional probability of drawing an

192 | Probability Reading I



ace after one ace has already been drawn is .

Thus, the probability of both cards being aces is

.

Conditional Probability

The probability the event B occurs, given that
event A has happened, is represented as

P(B | A)

This is read as “the probability of B given A”

Example 14

Find the probability that a die rolled shows a 6, given that
a flipped coin shows a head.

These are two independent events, so the probability of
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the die rolling a 6 is , regardless of the result of the coin

flip.

Example 15

The table below shows the number of survey subjects
who have received and not received a speeding ticket in the
last year, and the color of their car. Find the probability that
a randomly chosen person:

1. Has a speeding ticket given they have a red car
2. Has a red car given they have a speeding ticket

Solution

Speeding
Ticket

No Speeding
Ticket

Tota
l

Red car 15 135 150

Not red
car 45 470 515

Total 60 605 665

1. Since we know the person has a red car, we are
only considering the 150 people in the first row of the
table. Of those, 15 have a speeding ticket, so
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2. Since we know the person has a speeding ticket, we
are only considering the 60 people in the first column
of the table. Of those, 15 have a red car, so

Notice from the last example that P(B | A) is not equal to P(A | B).
These kinds of conditional probabilities are what insurance

companies use to determine your insurance rates. They look at the
conditional probability of you having accident, given your age, your
car, your car color, your driving history, etc., and price your policy
based on that likelihood.

Conditional Probability Formula

If Events A and B are not independent, then

P(A and B) = P(A) · P(B | A)

Probability Reading I | 195



Example 16

If you pull 2 cards out of a deck, what is the probability
that both are spades?

Solution

The probability that the first card is a spade is .

The probability that the second card is a spade, given the

first was a spade, is , since there is one less spade in

the deck, and one less total cards.

The probability that both cards are spades is

Example 17

If you draw two cards from a deck, what is the probability
that you will get the Ace of Diamonds and a black card?
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Solution

You can satisfy this condition by having Case A or Case B,
as follows:

• Case A: you can get the Ace of Diamonds first and
then a black card or

• Case B: you can get a black card first and then the
Ace of Diamonds.

Let’s calculate the probability of Case A. The probability

that the first card is the Ace of Diamonds is . The

probability that the second card is black given that the first

card is the Ace of Diamonds is because 26 of the

remaining 51 cards are black. The probability is therefore

.

Now for Case B: the probability that the first card is black

is . The probability that the second card is the

Ace of Diamonds given that the first card is black is .

The probability of Case B is therefore ,

the same as the probability of Case 1.

Recall that the probability of A or B is P(A) + P(B) – P(A and
B). In this problem, P(A and B) = 0 since the first card
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cannot be the Ace of Diamonds and be a black card.
Therefore, the probability of Case A or Case B is

. The probability that you will

get the Ace of Diamonds and a black card when drawing

two cards from a deck is .

Try it Now

In your drawer you have 10 pairs of socks, 6 of which
are white. If you reach in and randomly grab two pairs
of socks, what is the probability that both are white?

Example 18

A home pregnancy test was given to women, then
pregnancy was verified through blood tests. The following
table shows the home pregnancy test results. Find

1. P(not pregnant | positive test result)
2. P(positive test result | not pregnant)

198 | Probability Reading I



Solution

Positive Test Negative Test Total

Pregnant 70 4 74

Not Pregnant 5 14 19

Total 75 18 93

1. Since we know the test result was positive, we’re
limited to the 75 women in the first column, of which
5 were not pregnant. P(not pregnant | positive test

result) = .

2. Since we know the woman is not pregnant, we are
limited to the 19 women in the second row, of which 5
had a positive test. P(positive test result | not

pregnant) = .

The second result is what is usually called a false positive:
A positive result when the woman is not actually pregnant.
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PART VI

MODULE 5: MODULAR
ARITHMETIC
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11. Modular Arithmetic
Readings

For this first reading, you will need to access several external
webpages provided by Khan Academy. Once you have completed
all of the readings and practices, click the Next button below to
continue the reading for Unit 1.

• What is Modular Arithmetic?
• Practice—Using the Modulo Operator
• Congruence Modulo
• Congruence Relation Practice
• Equivalence Relations
• The Quotient Remainder Theorem
• Modular Addition and Subtraction
• Practice—Modular Addition
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12. Modular Arithmetic

Introduction to modular arithmetic using clocks and telling the
time.

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

hostosintrocollegemath/?p=34
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13. Calculator Shortcut for
Modular Arithmetic

Modular arithmetic

If you think back to doing division with whole numbers, you may
remember finding the whole number result and the remainder after
division.

Modulus

The modulus1 is another name for the remainder after
division.

For example, 17 mod 5 = 2, since if we divide 17 by 5,
we get 3 with remainder 2.

Modular arithmetic is sometimes called clock arithmetic, since
analog clocks wrap around times past 12, meaning they work on

1. Sometimes, instead of seeing 17 mod 5 = 2, you’ll see 17 ≡
2 (mod 5). The ≡ symbol means “congruent to” and
means that 17 and 2 are equivalent, after you consider
the modulus 5.
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a modulus of 12. If the hour hand of a clock currently points to
8, then in 5 hours it will point to 1. While 8 + 5 = 13, the clock
wraps around after 12, so all times can be thought of as modulus 12.
Mathematically, 13 mod 12 = 1.

Example 1

Compute the following:

1. 10 mod 3
2. 15 mod 5
3. 27 mod 5

Answers

1. Since 10 divided by 3 is 3 with remainder 1, 10 mod
3 = 1

2. Since 15 divided by 5 is 3 with no remainder, 15 mod
5 = 0

3. 27 = 128. 128 divide by 5 is 25 with remainder 3, so 27

mod 5 = 3
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Try it Now

Compute the following:

1. 23 mod 7
2. 15 mod 7
3. 2034 mod 7

Recall that when we divide 17 by 5, we could represent the result
as 3 remainder 2, as the mixed number

, or as the decimal 3.4. Notice that the modulus, 2, is the same
as the numerator of the fractional part of the mixed number, and
that the decimal part 0.4 is equivalent to the fraction

. We can use these conversions to calculate the modulus of not-too-
huge numbers on a standard calculator.

Modulus on a Standard Calculator

To calculate a mod n on a standard calculator

1. Divide a by n
2. Subtract the whole part of the resulting quantity
3. Multiply by n to obtain the modulus
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Example 2

Calculate 31345 mod 419.

Answer

Now subtract
74 to get just
the decimal
remainder

Multiply this
by 419 to get
the modulus

This tells us
0.8090692 was
equivalent to

In the text above, only a portion of the decimal value was
written down. In practice, you should try to avoid writing
down the intermediary steps, and instead allow your
calculator to retain as many decimal values as it can.
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PART VII

MODULE 6: MEASUREMENT
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14. Measurement

https://nrocnetwork.org/resources/courses/nroc-math/nroc-
math-standard/

Module 6 contains Measurement assessments
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