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1. Request Access

To preserve academic integrity
and prevent students from gaining unauthorized access to faculty
resources, we verify each request manually.

Contact oer@achievingthedream.org and we’ll get you on your
way.

Overview of Faculty Resources

This is a community course developed by an Achieving the Dream
grantee. They have either curated or created a collection of faculty
resources for this course. Since the resources are openly licensed,
you may use them as is or adapt them to your needs.

Now Available

• PDF
• Problem Sets
• Mathematica

Request Access | 3



• Practice Tests

Share Your Favorite Resources

If you have sample resources you would like to share with other
faculty teaching this course, please send them with an explanatory
message and learning outcome alignment
to oer@achievingthedream.org.

4 | Request Access



2. Download for Offline Use

The course is currently available to download in the following
formats:

• PDF

Download for Offline Use | 5



3. Homework Problems

College Algebra Unit Lessons

6 | Homework Problems



Lesson title Practice problems

Lesson 1 solving equations 2.2 pg 100 #6-21
2.3 pg 109-110 #32,34,39,46,49

Lesson 2 Quadratic Equations 2.5 pg 129 #6-43

Lesson 3 quadratics with complex
roots

2.4 pg 118 #15-30
Revisit 2.5 pg 129 #38-43, if no

real solution find complex solution

Lesson 4 quadratic forms and
radical equations 2.6 pg 141 #13-28, 37-41

Lesson 5 Absolute Value Equations
and Inequalities

2.6 pg 141 #29-36
2.7 pg 149 -150

#6-23,28-37,43-53

Lesson 6 Linear Functions 4.1 pg 304-306 #
24-36,56-63,76-84

Lesson 7 Applications 2.3 pg 108-110 # 6-27
2.5 pg 130 #51,54,56,57
Need equation supplement

Unit I Exam Lesson 1-7

Lesson 8 Basics of Functions and
their graphs

3.2 pg 193-194 #6-37
3.1 pg 176 #8-39

Lesson 9 More on Basics of
Functions and their Graphs

3.1 pg 177-178 #40-54
3.2 pg 194-195 #38-54
3.3 pg 206-207 #18-25

Lesson 10 Operations of Functions 3.4 pg 218-220 #5-89

Lesson 11 Transformation of
Functions 3.1pg 174-175

3.5 pg 243-245 #6-81

Lesson 12 Synthetic Division,
Remainder Theorem & Factor
Theorem

5.4 pg 400-402 #3-53

Lesson 13 Rational Functions 5.6 pg 431 #6-79

Lesson 14 Polynomial & Rational
Inequalities Need supplement

Homework Problems | 7



Lesson 15 Zeros of Polynomials
Functions 5.5 pg 412 #6-70

Unit II Lesson 8-15

Lesson 16 Inverse Functions 3.7 pg 264-266 #7-43

Lesson 17 Exponential Functions 6.1 pg 477 #14-26,44-50
6.2 pg 488 #8-50

Lesson 18 Logarithmic Functions 6.3 pg 497 #6-58
6.4 pg 513 #6-57

Lesson 19 Properties of Logs 6.5 pg 525 #3-37

Lesson 20 Exponential & Log
Equations 6.6 pg 535 #4-64

Lesson 21 Applications of
exponential and log functions 6.1 pg 477 #28-43,56-68

6.7 pg 550 #28-44

Unit III Lesson 16-21

Lesson 22 Systems of Linear
Equations Substitution and
Elimination

7.1 pg 589 #6-76
7.2 pg pg 599 #6-70

Lesson 23 Matrices 7.6 pg 644 #6-61

lesson 24 Matrix Algebra 7.5 pg 632 #6-49
7.7 pg 658 #6-42

Lesson 25 System of Non-linear
equations and Systems of
inequalities

7.3 pg 611 #6-52

Unit IV Lesson 22-25

https://openstax.org/details/college-algebra

8 | Homework Problems



4. Mathematica—Link to in
Blackboard

http://demonstrations.wolfram.com/
SolveQuadraticEquationsWithIntegerCoefficients/

http://demonstrations.wolfram.com/
SolvingATypeOfEquationWithASquareRoot/

http://demonstrations.wolfram.com/
FunctionTransformationsAndInverses/

http://demonstrations.wolfram.com/HornersMethod/
http://demonstrations.wolfram.com/

FunctionTransformationsAndInverses/
http://demonstrations.wolfram.com/

SolvingASystemOfTwoLinearEquationsWithSubstitution/
http://demonstrations.wolfram.com/

OppositeCoefficientsMethodForSolvingTwoEquationsInTwoUnkno
wn/

Mathematica—Link to in
Blackboard | 9



5. Functions Practice Test

For the following exercises, determine whether each of the
following relations is a function.

1. y = 2x + 8
2.

For the following exercises, evaluate the function

at the given input.
3.

4.

5. Show that the function

is not one-to-one.
6. Write the domain of the function

in interval notation.
7. Given

, find

.
8. Graph the function

9. Find the average rate of change of the function

by finding

.

10 | Functions Practice Test



For the following exercises, use the functions

to find the composite functions.
10.

11.

12. Express

as a composition of two functions, f and g, where

.
For the following exercises, graph the functions by translating,

stretching, and/or compressing a toolkit function.
13.

14.

For the following exercises, determine whether the functions are
even, odd, or neither.

15.

16.

17.

18. Graph the absolute value function

.
19. Solve

.
20. Solve

Functions Practice Test | 11



. Express the solution in interval notation.
For the following exercises, find the inverse of the function.
21.

22.

For the following exercises, use the graph of g shown below.

23. On what intervals is the function increasing?
24. On what intervals is the function decreasing?
25. Approximate the local minimum of the function. Express the

answer as an ordered pair.
26. Approximate the local maximum of the function. Express the

answer as an ordered pair.
For the following exercises, use the graph of the piecewise

12 | Functions Practice Test



function shown below.

27. Find

.
28. Find

.
29. Write an equation for the piecewise function.
For the following exercises, use the values listed below.

x F(x)

0 1

1 3

2 5

3 7

4 9

5 11

6 13

7 15

8 17

30. Find

Functions Practice Test | 13



.
31. Solve the equation

.
32. Is the graph increasing or decreasing on its domain?
33. Is the function represented by the graph one-to-one?
34. Find

.
35. Given

, find

.

14 | Functions Practice Test



6. Linear Functions Practice
Test

1. Determine whether the following algebraic equation can be
written as a linear function. 2x + 3y = 7

2. Determine whether the following function is increasing or
decreasing. f(x) = –2x + 5

3. Determine whether the following function is increasing or
decreasing. f(x) = 7x + 9

4. Given the following set of information, find a linear equation
satisfying the conditions, if possible.

Passes through (5, 1) and (3, –9)
5. Given the following set of information, find a linear equation

satisfying the conditions, if possible.
x intercept at (–4, 0) and y-intercept at (0, –6)

Linear Functions Practice Test | 15



6. Find the slope of the line in the graph below.

16 | Linear Functions Practice Test



7. Write an equation for line in the graph below.

8. Does the table below represent a linear function? If so, find a
linear equation that models the data.

x –6 0 2 4

g(x) 14 32 38 44

9. Does the table below represent a linear function? If so, find a
linear equation that models the data.

x 1 3 7 11

g(x) 4 9 19 12

10. At 6 am, an online company has sold 120 items that day. If the
company sells an average of 30 items per hour for the remainder of

Linear Functions Practice Test | 17



the day, write an expression to represent the number of items that
were sold after 6 am.

For the following exercises, determine whether the lines given by
the equations below are parallel, perpendicular, or neither parallel
nor perpendicular:

11.

12.

13. Find the x- and y-intercepts of the equation 2x + 7y = –14.
14. Given below are descriptions of two lines. Find the slopes of

Line 1 and Line 2. Is the pair of lines parallel, perpendicular, or
neither?
Line 1: Passes through (–2, –6) and (3, 14)
Line 2: Passes through (2, 6) and (4, 14)

15. Write an equation for a line perpendicular to f(x) = 4x + 3 and
passing through the point (8, 10).

16. Sketch a line with a y-intercept of (0, 5) and slope

.
17. Graph the linear function f(x) = –x + 6 .
18. For the two linear functions, find the point of intersection:

19. A car rental company offers two plans for renting a car.
Plan A: $25 per day and $0.10 per mile
Plan B: $40 per day with free unlimited mileage
How many miles would you need to drive for plan B to save you
money?

20. Find the area of a triangle bounded by the y axis, the line f(x)
= 12 – 4x, and the line perpendicular to f that passes through the
origin.

21. A town’s population increases at a constant rate. In 2010 the
population was 65,000. By 2012 the population had increased to

18 | Linear Functions Practice Test



90,000. Assuming this trend continues, predict the population in
2018.

22. The number of people afflicted with the common cold in the
winter months dropped steadily by 25 each year since 2002 until
2012. In 2002, 8,040 people were inflicted. Find the linear function
that models the number of people afflicted with the common cold
C as a function of the year, t. When will less than 6,000 people be
afflicted?

For the following exercises, use the graph below, showing the
profit, y, in thousands of dollars, of a company in a given year, x,
where x represents years since 1980.

23. Find the linear function y, where y depends on x, the number
of years since 1980.

24. Find and interpret the y-intercept.
25. In 2004, a school population was 1250. By 2012 the population

had dropped to 875. Assume the population is changing linearly.
a. How much did the population drop between the year

2004 and 2012?
b. What is the average population decline per year?
c. Find an equation for the population, P, of the school t
years after 2004.

26. Draw a scatter plot for the data provided below. Then
determine whether the data appears to be linearly related.

Linear Functions Practice Test | 19



0 2 4 6 8 10

–450 –200 10 265 500 755

27. Draw a best-fit line for the plotted data.

For the following exercises, use the table below, which shows the
percent of unemployed persons 25 years or older who are college
graduates in a particular city, by year.

Year Percent Graduates

2000 8.5

2002 8.0

2005 7.2

2007 6.7

2010 6.4

28. Determine whether the trend appears linear. If so, and assuming
the trend continues, find a linear regression model to predict the
percent of unemployed in a given year to three decimal places.

29. In what year will the percentage drop below 4%?
30. Based on the set of data given in the table below, calculate

the regression line using a calculator or other technology tool, and

20 | Linear Functions Practice Test



determine the correlation coefficient. Round to three decimal
places of accuracy.

x 16 18 20 24 26

y 106 110 115 120 125

For the following exercises, consider this scenario: The population
of a city increased steadily over a ten-year span. The following
ordered pairs shows the population (in hundreds) and the year over
the ten-year span, (population, year) for specific recorded years:

(4,500, 2000); (4,700, 2001); (5,200, 2003); (5,800, 2006)
31. Use linear regression to determine a function y, where the

year depends on the population. Round to three decimal places of
accuracy.

32. Predict when the population will hit 20,000.
33. What is the correlation coefficient for this model?

Linear Functions Practice Test | 21



7. Polynomial and Rational
Functions Practice Test

1. Determine whether the following algebraic equation can be
written as a linear function. 2x + 3y = 7

2. Determine whether the following function is increasing or
decreasing. f(x) = –2x + 5

3. Determine whether the following function is increasing or
decreasing. f(x) = 7x + 9

4. Given the following set of information, find a linear equation
satisfying the conditions, if possible.

Passes through (5, 1) and (3, –9)
5. Given the following set of information, find a linear equation

satisfying the conditions, if possible.
x intercept at (–4, 0) and y-intercept at (0, –6)

22 | Polynomial and Rational
Functions Practice Test



6. Find the slope of the line.

Polynomial and Rational Functions Practice Test | 23



7. Write an equation for line in the graph below.

8. Does the table below represent a linear function? If so, find a
linear equation that models the data.

x –6 0 2 4

g(x) 14 32 38 44

9. Does the table below represent a linear function? If so, find a
linear equation that models the data.

x 1 3 7 11

g(x) 4 9 19 12

10. At 6 am, an online company has sold 120 items that day. If the
company sells an average of 30 items per hour for the remainder of
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the day, write an expression to represent the number of items that
were sold n after 6 am.

For the following exercises, determine whether the lines given by
the equations below are parallel, perpendicular, or neither parallel
nor perpendicular:

11.

12.

13. Find the x- and y-intercepts of the equation 2x + 7y = –14.
14. Given below are descriptions of two lines. Find the slopes of

Line 1 and Line 2. Is the pair of lines parallel, perpendicular, or
neither?

Line 1: Passes through (–2, –6) and (3, 14)
Line 2: Passes through (2, 6) and (4, 14)
15. Write an equation for a line perpendicular to f(x) = 4x + 3 and

passing through the point (8, 10).
16. Sketch a line with a y-intercept of (0, 5) and slope

.
17. Graph the linear function f(x) = –x + 6.
18. For the two linear functions, find the point of intersection:

19. A car rental company offers two plans for renting a car.
Plan A: $25 per day and $0.10 per mile

Plan B: $40 per day with free unlimited mileage
How many miles would you need to drive for plan B to save you
money?

20. Find the area of a triangle bounded by the y axis, the line f(x)
= 12 – 4x, and the line perpendicular to f that passes through the
origin.

21. A town’s population increases at a constant rate. In 2010 the
population was 65,000. By 2012 the population had increased to

Polynomial and Rational Functions Practice Test | 25



90,000. Assuming this trend continues, predict the population in
2018.

22. The number of people afflicted with the common cold in the
winter months dropped steadily by 25 each year since 2002 until
2012. In 2002, 8,040 people were inflicted. Find the linear function
that models the number of people afflicted with the common cold
C as a function of the year, t. When will less than 6,000 people be
afflicted?

For the following exercises, use the graph below, showing the
profit, y in thousands of dollars, of a company in a given year, x,
where x represents years since 1980.

23. Find the linear function y, where y depends on x, the number
of years since 1980.

24. Find and interpret the y-intercept.
25. In 2004, a school population was 1250. By 2012 the population

had dropped to 875. Assume the population is changing linearly.
a. How much did the population drop between the year

2004 and 2012?
b. What is the average population decline per year?
c. Find an equation for the population, P, of the school t
years after 2004.

26. Draw a scatter plot for the data provided in the table below.
Then determine whether the data appears to be linearly related.
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0 2 4 6 8 10

–450 –200 10 265 500 755

27. Draw a best-fit line for the plotted data.

For the following exercises, use the table below, which shows the
percent of unemployed persons 25 years or older who are college
graduates in a particular city, by year.

Year Percent Graduates

2000 8.5

2002 8.0

2005 7.2

2007 6.7

2010 6.4

28. Determine whether the trend appears linear. If so, and assuming
the trend continues, find a linear regression model to predict the
percent of unemployed in a given year to three decimal places.

29. In what year will the percentage drop below 4%?
30. Based on the set of data given below, calculate the regression

line using a calculator or other technology tool, and determine the
correlation coefficient. Round to three decimal places of accuracy.
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x 16 18 20 24 26

y 106 110 115 120 125

For the following exercises, consider this scenario: The population
of a city increased steadily over a ten-year span. The following
ordered pairs shows the population (in hundreds) and the year over
the ten-year span, (population, year) for specific recorded years:

(4,500, 2000); (4,700, 2001); (5,200, 2003); (5,800, 2006)
31. Use linear regression to determine a function y, where the

year depends on the population. Round to three decimal places of
accuracy.

32. Predict when the population will hit 20,000.
33. What is the correlation coefficient for this model?
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8. Exponential and
Logarithmic Functions
Practice Test

1. The population of a pod of bottlenose dolphins is modeled by
the function

, where t is given in years. To the nearest whole number, what will
the pod population be after 3 years?

2. Find an exponential equation that passes through the points (0,
4) and (2, 9).

3. Drew wants to save $2,500 to go to the next World Cup. To the
nearest dollar, how much will he need to invest in an account now
with 6.25% APR, compounding daily, in order to reach his goal in
4 years?

4. An investment account was opened with an initial deposit of
$9,600 and earns 7.4% interest, compounded continuously. How
much will the account be worth after 15 years?

5. Graph the function

and its reflection across the y-axis on the same axes, and give the
y-intercept.

6. The graph shows transformations of the graph of

. What is the equation for the transformation?
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7. Rewrite

as an equivalent exponential equation.
8. Rewrite

as an equivalent logarithmic equation.
9. Solve for x by converting the logarithmic equation

to exponential form.
10. Evaluate

without using a calculator.
11. Evaluate

using a calculator. Round to the nearest thousandth.
12. Graph the function
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.
13. State the domain, vertical asymptote, and end behavior of

the function

.
14. Rewrite

as a sum.
15. Rewrite

in compact form.
16. Rewrite

as a product.
17. Use properties of logarithm to expand

.
18. Condense the expression

to a single logarithm.
19. Rewrite

as a logarithm. Then apply the change of base formula to solve for
using the natural log. Round to the nearest thousandth.

20. Solve

by rewriting each side with a common base.
21. Use logarithms to find the exact solution for

. If there is no solution, write no solution.
22. Find the exact solution for
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. If there is no solution, write no solution.
23. Find the exact solution for

. If there is no solution, write no solution.
24. Find the exact solution for

. If there is no solution, write no solution.
25. Find the exact solution for

. If there is no solution, write no solution.
26. Use the definition of a logarithm to find the exact solution for

27. Use the one-to-one property of logarithms to find an exact
solution for

If there is no solution, write no solution.
28. The formula for measuring sound intensity in decibels D is

defined by the equation

, where I is the intensity of the sound in watts per square meter and

is the lowest level of sound that the average person can hear. How
many decibels are emitted from a rock concert with a sound
intensity of

watts per square meter?
29. A radiation safety officer is working with 112 grams of a

radioactive substance. After 17 days, the sample has decayed to
80 grams. Rounding to five significant digits, write an exponential
equation representing this situation. To the nearest day, what is the
half-life of this substance?

30. Write the formula found in the previous exercise as an
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equivalent equation with base . Express the exponent to five
significant digits.

31. A bottle of soda with a temperature of 71º Fahrenheit was taken
off a shelf and placed in a refrigerator with an internal temperature
of 35º F. After ten minutes, the internal temperature of the soda was
63º F. Use Newton’s Law of Cooling to write a formula that models
this situation. To the nearest degree, what will the temperature of
the soda be after one hour?

32. The population of a wildlife habitat is modeled by the equation

, where t is given in years. How many animals were originally
transported to the habitat? How many years will it take before the
habitat reaches half its capacity?

33. Enter the data from the table below into a graphing calculator
and graph the resulting scatter plot. Determine whether the data
from the table would likely represent a function that is linear,
exponential, or logarithmic.

x f(x)

1 3

2 8.55

3 11.79

4 14.09

5 15.88

6 17.33

7 18.57

8 19.64

9 20.58

10 21.42

34. The population of a lake of fish is modeled by the logistic
equation
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, where t is time in years. To the nearest hundredth, how many years
will it take the lake to reach 80% of its carrying capacity?

For the following exercises, use a graphing utility to create a
scatter diagram of the data given in the table. Observe the shape of
the scatter diagram to determine whether the data is best described
by an exponential, logarithmic, or logistic model. Then use the
appropriate regression feature to find an equation that models the
data. When necessary, round values to five decimal places.

35.

x f(x)

1 20

2 21.6

3 29.2

4 36.4

5 46.6

6 55.7

7 72.6

8 87.1

9 107.2

10 138.1

36.
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x f(x)

3 13.98

4 17.84

5 20.01

6 22.7

7 24.1

8 26.15

9 27.37

10 28.38

11 29.97

12 31.07

13 31.43

37.

x f(x)

0 2.2

0.5 2.9

1 3.9

1.5 4.8

2 6.4

3 9.3

4 12.3

5 15

6 16.2

7 17.3

8 17.9
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9. I Need Help

Need more information about this course? Have questions about
faculty resources? Can’t find what you’re looking for? Experiencing
technical difficulties?

We’re here to help! Contact oer@achievingthedream.org for
support.
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PART II

REAL NUMBERS: ALGEBRA
ESSENTIALS
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10. Introduction to Real
Numbers: Algebra Essentials

Learning Objectives

By the end of this section, you will be able to:

• Classify a real number as a natural, whole, integer,
rational, or irrational number.

• Perform calculations using order of operations.
• Use the following properties of real numbers:

commutative, associative, distributive, inverse, and
identity.

• Evaluate algebraic expressions.
• Simplify algebraic expressions.

It is often said that mathematics is the language of science. If this is
true, then the language of mathematics is numbers. The earliest use
of numbers occurred 100 centuries ago in the Middle East to count,
or enumerate items. Farmers, cattlemen, and tradesmen used
tokens, stones, or markers to signify a single quantity—a sheaf of
grain, a head of livestock, or a fixed length of cloth, for example.
Doing so made commerce possible, leading to improved
communications and the spread of civilization.

Three to four thousand years ago, Egyptians introduced fractions.
They first used them to show reciprocals. Later, they used them to
represent the amount when a quantity was divided into equal parts.

But what if there were no cattle to trade or an entire crop of
grain was lost in a flood? How could someone indicate the existence
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of nothing? From earliest times, people had thought of a “base
state” while counting and used various symbols to represent this
null condition. However, it was not until about the fifth century A.D.
in India that zero was added to the number system and used as a
numeral in calculations.

Clearly, there was also a need for numbers to represent loss or
debt. In India, in the seventh century A.D., negative numbers were
used as solutions to mathematical equations and commercial debts.
The opposites of the counting numbers expanded the number
system even further.

Because of the evolution of the number system, we can now
perform complex calculations using these and other categories of
real numbers. In this section, we will explore sets of numbers,
calculations with different kinds of numbers, and the use of
numbers in expressions.
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11. Classifying a Real Number

The numbers we use for counting, or enumerating items, are the
natural numbers: 1, 2, 3, 4, 5, and so on. We describe them in
set notation as {1, 2, 3, …} where the ellipsis (…) indicates that the
numbers continue to infinity. The natural numbers are, of course,
also called the counting numbers. Any time we enumerate the
members of a team, count the coins in a collection, or tally the trees
in a grove, we are using the set of natural numbers. The set of whole
numbers is the set of natural numbers plus zero: {0, 1, 2, 3,…}.

The set of integers adds the opposites of the natural numbers to
the set of whole numbers: {…-3, -2, -1, 0, 1, 2, 3,…}. It is useful to
note that the set of integers is made up of three distinct subsets:
negative integers, zero, and positive integers. In this sense, the
positive integers are just the natural numbers. Another way to think
about it is that the natural numbers are a subset of the integers.

The set of rational numbers is written as

. Notice from

the definition that rational numbers are fractions (or quotients)
containing integers in both the numerator and the denominator,
and the denominator is never 0. We can also see that every natural
number, whole number, and integer is a rational number with a
denominator of 1.

Because they are fractions, any rational number can also be
expressed in decimal form. Any rational number can be represented
as either:

1. a terminating decimal:

, or
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2. a repeating decimal:

We use a line drawn over the repeating block of numbers instead of
writing the group multiple times.

Example 1: Writing Integers as Rational
Numbers

Write each of the following as a rational number.

1. 7
2. 0
3. –8

Solution

Write a fraction with the integer in the numerator and
1 in the denominator.

1.
2.
3.
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Try It 1

Write each of the following as a rational number.

a. 11
b. 3
c. –4

Solution

Example 2: Identifying Rational
Numbers

Write each of the following rational numbers as either
a terminating or repeating decimal.

1.
2.
3.
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Solution

Write each fraction as a decimal by dividing the
numerator by the denominator.

1.
, a repeating decimal

2.
(or 3.0), a terminating decimal

3.
,
a terminating decimal

Try It 2

Write each of the following rational numbers as either a
terminating or repeating decimal.

a.

b.

c.

Solution
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Irrational Numbers

At some point in the ancient past, someone discovered that not all
numbers are rational numbers. A builder, for instance, may have
found that the diagonal of a square with unit sides was not 2 or even

, but was something else. Or a garment maker might have observed
that the ratio of the circumference to the diameter of a roll of
cloth was a little bit more than 3, but still not a rational number.
Such numbers are said to be irrational because they cannot be
written as fractions. These numbers make up the set of irrational
numbers. Irrational numbers cannot be expressed as a fraction of
two integers. It is impossible to describe this set of numbers by
a single rule except to say that a number is irrational if it is not
rational. So we write this as shown.

{h | h is not a rational number}

Example 3: Differentiating Rational and
Irrational Numbers

Determine whether each of the following numbers is
rational or irrational. If it is rational, determine whether
it is a terminating or repeating decimal.

1.
2.
3.
4.
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5.

Solution

1.
This can be simplified as . Therefore,

is rational.
2.

Because it is a fraction,

is a rational number. Next, simplify and divide.

So,

is rational and a repeating decimal.

3.
This cannot be simplified any further. Therefore,

is an irrational number.
4.

Because it is a fraction,

is a rational number. Simplify and divide.
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So,

is rational and a terminating decimal.

5. 0.3033033303333… is not a terminating
decimal. Also note that there is no repeating
pattern because the group of 3s increases each
time. Therefore it is neither a terminating nor a
repeating decimal and, hence, not a rational
number. It is an irrational number.

Try It 3

Determine whether each of the following numbers is
rational or irrational. If it is rational, determine whether it is
a terminating or repeating decimal.

a.

b.

c.

d.

e.
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Solution

Real Numbers

Given any number n, we know that n is either rational or irrational.
It cannot be both. The sets of rational and irrational numbers
together make up the set of real numbers. As we saw with integers,
the real numbers can be divided into three subsets: negative real
numbers, zero, and positive real numbers. Each subset includes
fractions, decimals, and irrational numbers according to their
algebraic sign (+ or –). Zero is considered neither positive nor
negative.

The real numbers can be visualized on a horizontal number line
with an arbitrary point chosen as 0, with negative numbers to the
left of 0 and positive numbers to the right of 0. A fixed unit distance
is then used to mark off each integer (or other basic value) on either
side of 0. Any real number corresponds to a unique position on the
number line.The converse is also true: Each location on the number
line corresponds to exactly one real number. This is known as a one-
to-one correspondence. We refer to this as the real number line as
shown in Figure 1.

Figure 1. The real number line

48 | Classifying a Real Number



Example 4: Classifying Real Numbers

Classify each number as either positive or negative
and as either rational or irrational. Does the number lie
to the left or the right of 0 on the number line?

1.
2.
3.
4.
5.

Solution

1.
is negative and rational. It lies to the left of 0 on
the number line.

2. is positive and irrational. It lies to the right

of 0.

3. is negative

and rational. It lies to the left of 0.
4. is negative and irrational. It lies to the left
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of 0.
5. is a repeating

decimal so it is rational and positive. It lies to the
right of 0.

Try It 4

Classify each number as either positive or negative and
as either rational or irrational. Does the number lie to the
left or the right of 0 on the number line?

a.

b.

c.

d.

e.

Solution

Sets of Numbers as Subsets

Beginning with the natural numbers, we have expanded each set
to form a larger set, meaning that there is a subset relationship
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between the sets of numbers we have encountered so far. These
relationships become more obvious when seen as a diagram.

Figure 2. Sets of numbers. N: the set of natural numbers W: the set of whole
numbers I: the set of integers Q: the set of rational numbers Q´: the set of
irrational numbers

A General Note: Sets of Numbers

The set of natural numbers includes the numbers
used for counting: .

The set of whole numbers is the set of natural
numbers plus zero: .

The set of integers adds the negative natural numbers
to the set of whole numbers:

.
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The set of rational numbers includes fractions
written as

.

The set of irrational numbers is the set of numbers
that are not rational, are nonrepeating, and are
nonterminating:

.

Example 5: Differentiating the Sets of
Numbers

Classify each number as being a natural number (N),
whole number (W), integer (I), rational number (Q), and/
or irrational number (Q’).

1.

2.
3.
4.
5.
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Solution

N W I Q Q
’

1. X X X X

2. X

3.
X

4. –6 X X

5. X

Try It 5

Classify each number as being a natural number (N),
whole number (W), integer (I), rational number (Q), and/or
irrational number (Q’).

a.

b.
c.
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d.

e.

Solution

54 | Classifying a Real Number



12. Performing Calculations
Using the Order of
Operations

When we multiply a number by itself, we square it or raise it to
a power of 2. For example, . We can raise any

number to any power. In general, the exponential notation
means that the number or variable is used as a factor times.

In this notation, is read as the nth power of , where is
called the base and is called the exponent. A term in exponential
notation may be part of a mathematical expression, which is a
combination of numbers and operations. For example,

is a mathematical expression.

To evaluate a mathematical expression, we perform the various
operations. However, we do not perform them in any random order.
We use the order of operations. This is a sequence of rules for
evaluating such expressions.

Recall that in mathematics we use parentheses ( ), brackets [ ],
and braces { } to group numbers and expressions so that anything
appearing within the symbols is treated as a unit. Additionally,
fraction bars, radicals, and absolute value bars are treated as
grouping symbols. When evaluating a mathematical expression,
begin by simplifying expressions within grouping symbols.

The next step is to address any exponents or radicals. Afterward,
perform multiplication and division from left to right and finally
addition and subtraction from left to right.

Let’s take a look at the expression provided.

Performing Calculations Using the
Order of Operations | 55



There are no grouping symbols, so we move on to exponents or
radicals. The number 4 is raised to a power of 2, so simplify as
16.

Next, perform multiplication or division, left to right.

Lastly, perform addition or subtraction, left to right.

Therefore, .

For some complicated expressions, several passes through the
order of operations will be needed. For instance, there may be a
radical expression inside parentheses that must be simplified before
the parentheses are evaluated. Following the order of operations
ensures that anyone simplifying the same mathematical expression
will get the same result.
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A General Note: Order of Operations

Operations in mathematical expressions must be
evaluated in a systematic order, which can be simplified
using the acronym PEMDAS:

P(arentheses)

E(xponents)

M(ultiplication) and D(ivision)

A(ddition) and S(ubtraction)

How To: Given a mathematical
expression, simplify it using the order of
operations.

1. Simplify any expressions within grouping
symbols.

2. Simplify any expressions containing exponents
or radicals.

3. Perform any multiplication and division in order,
from left to right.

4. Perform any addition and subtraction in order,
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from left to right.

Example 6: Using the Order of
Operations

Use the order of operations to evaluate each of the
following expressions.

1.

2.

3.

4.

5.
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Solution

1.

2.

Note that in the first step, the radical is treated
as a grouping symbol, like parentheses. Also, in the
third step, the fraction bar is considered a
grouping symbol so the numerator is considered
to be grouped.

3.

4.
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In this example, the fraction bar separates the
numerator and denominator, which we simplify
separately until the last step.

5.

Try It 6

Use the order of operations to evaluate each of the
following expressions.

a.

b.

c.

d.

e.

Solution
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13. Using Properties of Real
Numbers

For some activities we perform, the order of certain operations does
not matter, but the order of other operations does. For example, it
does not make a difference if we put on the right shoe before the
left or vice-versa. However, it does matter whether we put on shoes
or socks first. The same thing is true for operations in mathematics.

Commutative Properties

The commutative property of addition states that numbers may be
added in any order without affecting the sum.

We can better see this relationship when using real numbers.

Similarly, the commutative property of multiplication states that
numbers may be multiplied in any order without affecting the
product.

Again, consider an example with real numbers.

It is important to note that neither subtraction nor division is
commutative. For example, is not the same as .
Similarly, .
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Associative Properties

The associative property of multiplication tells us that it does not
matter how we group numbers when multiplying. We can move the
grouping symbols to make the calculation easier, and the product
remains the same.

Consider this example.

The associative property of addition tells us that numbers may be
grouped differently without affecting the sum.

This property can be especially helpful when dealing with negative
integers. Consider this example.

Are subtraction and division associative? Review these examples.

As we can see, neither subtraction nor division is associative.
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Distributive Property

The distributive property states that the product of a factor times
a sum is the sum of the factor times each term in the sum.

This property combines both addition and multiplication (and is the
only property to do so). Let us consider an example.

Note that 4 is outside the grouping symbols, so we distribute the 4
by multiplying it by 12, multiplying it by –7, and adding the products.

To be more precise when describing this property, we say that
multiplication distributes over addition. The reverse is not true, as
we can see in this example.

Multiplication does not distribute over subtraction, and division
distributes over neither addition nor subtraction.

A special case of the distributive property occurs when a sum of
terms is subtracted.

For example, consider the difference . We can

rewrite the difference of the two terms 12 and by turning
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the subtraction expression into addition of the opposite. So instead
of subtracting , we add the opposite.

Now, distribute and simplify the result.

This seems like a lot of trouble for a simple sum, but it illustrates
a powerful result that will be useful once we introduce algebraic
terms. To subtract a sum of terms, change the sign of each term and
add the results. With this in mind, we can rewrite the last example.

Identity Properties

The identity property of addition states that there is a unique
number, called the additive identity (0) that, when added to a
number, results in the original number.

The identity property of multiplication states that there is a unique
number, called the multiplicative identity (1) that, when multiplied
by a number, results in the original number.

For example, we have and .
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There are no exceptions for these properties; they work for every
real number, including 0 and 1.

Inverse Properties

The inverse property of addition states that, for every real number
a, there is a unique number, called the additive inverse (or opposite),
denoted−a, that, when added to the original number, results in the
additive identity, 0.

For example, if , the additive inverse is 8, since
.

The inverse property of multiplication holds for all real numbers
except 0 because the reciprocal of 0 is not defined. The property
states that, for every real number a, there is a unique number,

called the multiplicative inverse (or reciprocal), denoted , that,

when multiplied by the original number, results in the multiplicative
identity, 1.

For example, if , the reciprocal, denoted , is

because
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A General Note: Properties of Real
Numbers

The following properties hold for real numbers a, b,
and c.

Addition Multiplication

Commutat
ive Property

Associativ
e Property

Distributiv
e Property

Identity
Property

There exists a unique real number
called the additive identity, 0, such
that, for any real number a

There exists a
unique real number
called the
multiplicative
identity, 1, such that,
for any real number a

Inverse
Property

Every real number a has an additive
inverse, or opposite, denoted –a, such
that

Every nonzero real
number a has a
multiplicative inverse,
or reciprocal,

denoted , such

that
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Example 7: Using Properties of Real
Numbers

Use the properties of real numbers to rewrite and
simplify each expression. State which properties apply.

1.
2.

3.

4.

5.

Solution

1.

2.

Using Properties of Real Numbers | 67



3.

4.

5.

Try It 7

Use the properties of real numbers to rewrite and
simplify each expression. State which properties apply.

a.

b.

c.

d.

e.

Solution
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14. Evaluating Algebraic
Expressions

So far, the mathematical expressions we have seen have involved
real numbers only. In mathematics, we may see expressions such

as , or . In the expression , 5 is

called a constant because it does not vary and x is called a variable
because it does. (In naming the variable, ignore any exponents or
radicals containing the variable.) An algebraic expression is a
collection of constants and variables joined together by the
algebraic operations of addition, subtraction, multiplication, and
division.

We have already seen some real number examples of exponential
notation, a shorthand method of writing products of the same
factor. When variables are used, the constants and variables are
treated the same way.

In each case, the exponent tells us how many factors of the base to
use, whether the base consists of constants or variables.

Any variable in an algebraic expression may take on or be assigned
different values. When that happens, the value of the algebraic
expression changes. To evaluate an algebraic expression means to
determine the value of the expression for a given value of each
variable in the expression. Replace each variable in the expression
with the given value, then simplify the resulting expression using
the order of operations. If the algebraic expression contains more
than one variable, replace each variable with its assigned value and
simplify the expression as before.
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Example 8: Describing Algebraic
Expressions

List the constants and variables for each algebraic
expression.

1. x + 5

2.

3.

Solution

Constants Variables

1. x + 5 5 x

2.

3. 2
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Try It 8

List the constants and variables for each algebraic
expression.

1.

2. 2(L + W)
3.

Solution

Example 9: Evaluating an Algebraic
Expression at Different Values

Evaluate the expression for each value for x.

1.
2.

3.

4.
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Solution

1. Substitute 0 for .

2. Substitute 1 for .

3. Substitute for .

4. Substitute for .
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Try It 9

Evaluate the expression for each value for y.

a.
b.

c.

d.

Solution

Example 10: Evaluating Algebraic
Expressions

Evaluate each expression for the given values.

1. for
2.

for
3.

for
4. for

5. for
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Solution

1. Substitute for .

2. Substitute 10 for .

3. Substitute 5 for .

4. Substitute 11 for and –8 for .

5. Substitute 2 for and 3 for .
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Try It 10

Evaluate each expression for the given values.

a. for

b. for

c. for

d. for

e. for

Solution
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15. Formulas

An equation is a mathematical statement indicating that two
expressions are equal. The expressions can be numerical or
algebraic. The equation is not inherently true or false, but only a
proposition. The values that make the equation true, the solutions,
are found using the properties of real numbers and other results.
For example, the equation has the unique solution

because when we substitute 3 for in the equation, we
obtain the true statement .

A formula is an equation expressing a relationship between
constant and variable quantities. Very often, the equation is a means
of finding the value of one quantity (often a single variable) in terms
of another or other quantities. One of the most common examples is
the formula for finding the area of a circle in terms of the radius

of the circle: . For any value of , the area can be

found by evaluating the expression .

Example 11: Using a Formula

A right circular cylinder with radius and height
has the surface area (in square units) given by the
formula . Find the surface area of

a cylinder with radius 6 in. and height 9 in. Leave the
answer in terms of .
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Figure 3. Right circular cylinder

Solution

Evaluate the expression for

and .

The surface area is square inches.
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Try It 11

Figure 4

A photograph with length L and width W is placed in a
matte of width 8 centimeters (cm). The area of the matte (in
square centimeters, or cm2) is found to be

. Find the area

of a matte for a photograph with length 32 cm and width 24
cm.

Solution
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16. Simplifying Algebraic
Expressions

Sometimes we can simplify an algebraic expression to make it easier
to evaluate or to use in some other way. To do so, we use the
properties of real numbers. We can use the same properties in
formulas because they contain algebraic expressions.

Example 12: Simplifying Algebraic
Expressions

Simplify each algebraic expression.

1.

2.

3.

4.
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Solution

1.

2.

3.

4.

Try It 12

Simplify each algebraic expression.

1.

2.

3.

4.

Solution
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Example 13: Simplifying a Formula

A rectangle with length and width has a
perimeter given by .
Simplify this expression.

Solution

Try It 13

If the amount is deposited into an account paying
simple interest for time , the total value of the deposit

is given by . Simplify the expression.
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(This formula will be explored in more detail later in the
course.)

Solution
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17. Key Concepts & Glossary

Key Concepts

• Rational numbers may be written as fractions or terminating
or repeating decimals.

• Determine whether a number is rational or irrational by
writing it as a decimal.

• The rational numbers and irrational numbers make up the set
of real numbers. A number can be classified as natural, whole,
integer, rational, or irrational.

• The order of operations is used to evaluate expressions.
• The real numbers under the operations of addition and

multiplication obey basic rules, known as the properties of real
numbers. These are the commutative properties, the
associative properties, the distributive property, the identity
properties, and the inverse properties.

• Algebraic expressions are composed of constants and variables
that are combined using addition, subtraction, multiplication,
and division. They take on a numerical value when evaluated by
replacing variables with constants.

• Formulas are equations in which one quantity is represented in
terms of other quantities. They may be simplified or evaluated
as any mathematical expression.

Glossary

algebraic expression constants and variables combined using
addition, subtraction, multiplication, and division

associative property of addition the sum of three numbers may
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be grouped differently without affecting the result; in symbols,

associative property of multiplication the product of three
numbers may be grouped differently without affecting the result; in
symbols,

base in exponential notation, the expression that is being
multiplied

commutative property of addition two numbers may be added
in either order without affecting the result; in symbols,

commutative property of multiplication two numbers may be
multiplied in any order without affecting the result; in symbols,

constant a quantity that does not change value
distributive property the product of a factor times a sum is the

sum of the factor times each term in the sum; in symbols,

equation a mathematical statement indicating that two
expressions are equal

exponent in exponential notation, the raised number or variable
that indicates how many times the base is being multiplied

exponential notation a shorthand method of writing products of
the same factor

formula an equation expressing a relationship between constant
and variable quantities

identity property of addition there is a unique number, called the
additive identity, 0, which, when added to a number, results in the
original number; in symbols,

identity property of multiplication there is a unique number,
called the multiplicative identity, 1, which, when multiplied by a
number, results in the original number; in symbols,

integers the set consisting of the natural numbers, their
opposites, and 0:

inverse property of addition for every real number , there is a

84 | Key Concepts & Glossary



unique number, called the additive inverse (or opposite), denoted
, which, when added to the original number, results in the

additive identity, 0; in symbols,

inverse property of multiplication for every non-zero real
number , there is a unique number, called the multiplicative

inverse (or reciprocal), denoted , which, when multiplied by the

original number, results in the multiplicative identity, 1; in symbols,

irrational numbers the set of all numbers that are not rational;
they cannot be written as either a terminating or repeating decimal;
they cannot be expressed as a fraction of two integers

natural numbers the set of counting numbers:

order of operations a set of rules governing how mathematical
expressions are to be evaluated, assigning priorities to operations

rational numbers the set of all numbers of the form , where

and are integers and . Any rational number may be
written as a fraction or a terminating or repeating decimal.

real number line a horizontal line used to represent the real
numbers. An arbitrary fixed point is chosen to represent 0; positive
numbers lie to the right of 0 and negative numbers to the left.

real numbers the sets of rational numbers and irrational numbers
taken together

variable a quantity that may change value
whole numbers the set consisting of 0 plus the natural numbers:
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18. Section Exercises

1. Is an example of a rational terminating, rational repeating, or

irrational number? Tell why it fits that category.
2. What is the order of operations? What acronym is used to

describe the order of operations, and what does it stand for?
3. What do the Associative Properties allow us to do when

following the order of operations? Explain your answer.
For the following exercises, simplify the given expression.
4.

5.

6.

7.

8.
9.

10.
11.

12.

13.
14.
15.

16.

17.
18.

19.
20.

21.

22.
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23.

24.

25.

26.

27.

For the following exercises, solve for the variable.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

For the following exercises, simplify the expression.
38.

39.

40.

41.

42.

43.

44.
45.
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46.

47.
48.

49.

50.

51.

52.

For the following exercises, consider this scenario: Fred earns $40
mowing lawns. He spends $10 on mp3s, puts half of what is left in a
savings account, and gets another $5 for washing his neighbor’s car.

53. Write the expression that represents the number of dollars
Fred keeps (and does not put in his savings account). Remember the
order of operations.

54. How much money does Fred keep?
For the following exercises, solve the given problem.
55. According to the U.S. Mint, the diameter of a quarter is 0.955

inches. The circumference of the quarter would be the diameter
multiplied by . Is the circumference of a quarter a whole number,
a rational number, or an irrational number?

56. Jessica and her roommate, Adriana, have decided to share a
change jar for joint expenses. Jessica put her loose change in the
jar first, and then Adriana put her change in the jar. We know that
it does not matter in which order the change was added to the jar.
What property of addition describes this fact?

For the following exercises, consider this scenario: There is a
mound of pounds of gravel in a quarry. Throughout the day, 400
pounds of gravel is added to the mound. Two orders of 600 pounds
are sold and the gravel is removed from the mound. At the end of
the day, the mound has 1,200 pounds of gravel.

57. Write the equation that describes the situation.
58. Solve for g.
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For the following exercise, solve the given problem.
59. Ramon runs the marketing department at his company. His

department gets a budget every year, and every year, he must spend
the entire budget without going over. If he spends less than the
budget, then his department gets a smaller budget the following
year. At the beginning of this year, Ramon got $2.5 million for the
annual marketing budget. He must spend the budget such that

. What property of addition tells us what

the value of x must be?
For the following exercises, use a graphing calculator to solve for

x. Round the answers to the nearest hundredth.

60.

61.

62. If a whole number is not a natural number, what must the
number be?

63. Determine whether the statement is true or false: The
multiplicative inverse of a rational number is also rational.

64. Determine whether the statement is true or false: The product
of a rational and irrational number is always irrational.

65. Determine whether the simplified expression is rational or

irrational: .

66. Determine whether the simplified expression is rational or

irrational: .

67. The division of two whole numbers will always result in what
type of number?

68. What property of real numbers would simplify the following
expression:
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PART III

LINEAR EQUATIONS IN
ONE VARIABLE
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19. Introduction to Linear
Equations in One Variable

Learning Objectives

By the end of this section, you will be able to:

• Solve equations in one variable algebraically.
• Solve a rational equation.
• Find a linear equation.
• Given the equations of two lines, determine

whether their graphs are parallel or perpendicular.
• Write the equation of a line parallel or

perpendicular to a given line.

Caroline is a full-time college student planning a spring break
vacation. To earn enough money for the trip, she has taken a part-
time job at the local bank that pays $15.00/hr, and she opened a
savings account with an initial deposit of $400 on January 15. She
arranged for direct deposit of her payroll checks. If spring break
begins March 20 and the trip will cost approximately $2,500, how
many hours will she have to work to earn enough to pay for her
vacation? If she can only work 4 hours per day, how many days
per week will she have to work? How many weeks will it take? In
this section, we will investigate problems like this and others, which
generate graphs like the line in Figure 1.
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Figure 1
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20. Solving Linear Equations
in One Variable

A linear equation is an equation of a straight line, written in one
variable. The only power of the variable is 1. Linear equations in
one variable may take the form and are solved using
basic algebraic operations.

We begin by classifying linear equations in one variable as one
of three types: identity, conditional, or inconsistent. An identity
equation is true for all values of the variable. Here is an example of
an identity equation.

The solution set consists of all values that make the equation true.
For this equation, the solution set is all real numbers because any
real number substituted for will make the equation true.

A conditional equation is true for only some values of the variable.
For example, if we are to solve the equation ,
we have the following:

The solution set consists of one number: . It is the only

solution and, therefore, we have solved a conditional equation.
An inconsistent equation results in a false statement. For

example, if we are to solve , we have the

following:
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Indeed, . There is no solution because this is an
inconsistent equation.

Solving linear equations in one variable involves the fundamental
properties of equality and basic algebraic operations. A brief review
of those operations follows.

A General Note: Linear Equation in
One Variable

A linear equation in one variable can be written in the
form

where a and b are real numbers, .

How To: Given a linear equation in one
variable, use algebra to solve it.

The following steps are used to manipulate an
equation and isolate the unknown variable, so that the
last line reads x=_________, if x is the unknown.
There is no set order, as the steps used depend on what
is given:
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1. We may add, subtract, multiply, or divide an
equation by a number or an expression as long as
we do the same thing to both sides of the equal
sign. Note that we cannot divide by zero.

2. Apply the distributive property as needed:
.

3. Isolate the variable on one side of the equation.
4. When the variable is multiplied by a coefficient

in the final stage, multiply both sides of the
equation by the reciprocal of the coefficient.

Example 1: Solving an Equation in One
Variable

Solve the following equation: .
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Solution

This equation can be written in the form
by subtracting from both sides.

However, we may proceed to solve the equation in its
original form by performing algebraic operations.

The solution is .

Try It 1

Solve the linear equation in one variable:
.

Solution
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Example 2: Solving an Equation
Algebraically When the Variable Appears
on Both Sides

Solve the following equation:
.

Solution

Apply standard algebraic properties.

Analysis of the Solution

This problem requires the distributive property to be applied twice,
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and then the properties of algebra are used to reach the final line,

.

Try It 2

Solve the equation in one variable:
.

Solution
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21. Solving a Rational
Equation

In this section, we look at rational equations that, after some
manipulation, result in a linear equation. If an equation contains at
least one rational expression, it is a considered a rational equation.

Recall that a rational number is the ratio of two numbers, such

as or . A rational expression is the ratio, or quotient, of two

polynomials. Here are three examples.

Rational equations have a variable in the denominator in at least one
of the terms.
Our goal is to perform algebraic operations so that the variables
appear in the numerator. In fact, we will eliminate all denominators
by multiplying both sides of the equation by the least common
denominator (LCD).

Finding the LCD is identifying an expression that contains the
highest power of all of the factors in all of the denominators. We
do this because when the equation is multiplied by the LCD, the
common factors in the LCD and in each denominator will equal one
and will cancel out.
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Example 3: Solving a Rational Equation

Solve the rational equation:

.

Solution

We have three denominators; , and 3. The
LCD must contain , and 3. An LCD of
contains all three denominators. In other words, each
denominator can be divided evenly into the LCD. Next,
multiply both sides of the equation by the LCD .

A common mistake made when solving rational equations involves
finding the LCD when one of the denominators is a binomial—two
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terms added or subtracted—such as . Always consider a

binomial as an individual factor—the terms cannot be separated. For
example, suppose a problem has three terms and the denominators
are , , and . First, factor all denominators. We
then have , , and as the denominators.

(Note the parentheses placed around the second denominator.)
Only the last two denominators have a common factor of

. The in the first denominator is separate from the in the
denominators. An effective way to remember this is to

write factored and binomial denominators in parentheses, and
consider each parentheses as a separate unit or a separate factor.
The LCD in this instance is found by multiplying together the , one
factor of , and the 3. Thus, the LCD is the following:

So, both sides of the equation would be multiplied by

. Leave the LCD in factored form, as this makes it easier to see how
each denominator in the problem cancels out.

Another example is a problem with two denominators, such as
and . Once the second denominator is factored as

, there is a common factor of x in both

denominators and the LCD is .

Sometimes we have a rational equation in the form of a
proportion; that is, when one fraction equals another fraction and
there are no other terms in the equation.

We can use another method of solving the equation without finding
the LCD: cross-multiplication. We multiply terms by crossing over
the equal sign.
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Multiply and , which results in .

Any solution that makes a denominator in the original expression
equal zero must be excluded from the possibilities.

A General Note: Rational Equations

A rational equation contains at least one rational
expression where the variable appears in at least one of
the denominators.

How To: Given a rational equation,
solve it.

1. Factor all denominators in the equation.
2. Find and exclude values that set each

denominator equal to zero.
3. Find the LCD.
4. Multiply the whole equation by the LCD. If the

LCD is correct, there will be no denominators left.
5. Solve the remaining equation.
6. Make sure to check solutions back in the

original equations to avoid a solution producing
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zero in a denominator

Example 4: Solving a Rational Equation
without Factoring

Solve the following rational equation:

Solution

We have three denominators: , , and . No
factoring is required. The product of the first two
denominators is equal to the third denominator, so, the
LCD is . Only one value is excluded from a solution
set, . Next, multiply the whole equation (both
sides of the equal sign) by .
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The proposed solution is , which is not an
excluded value, so the solution set contains one number,

, or written in set notation.

Try It 3

Solve the rational equation: .

Solution
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Example 5: Solving a Rational Equation
by Factoring the Denominator

Solve the following rational equation:

.

Solution

First find the common denominator. The three
denominators in factored form are ,
and . The smallest expression that is
divisible by each one of the denominators is . Only

is an excluded value. Multiply the whole
equation by .
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The solution is .

Try It 4

Solve the rational equation: .

Solution

Example 6: Solving Rational Equations
with a Binomial in the Denominator

Solve the following rational equations and state the
excluded values:

1.

2.
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3.

Solution

1. The denominators and have nothing
in common. Therefore, the LCD is the product

. However, for this problem, we can

cross-multiply.

The solution is . The excluded values
are and .

2. The LCD is . Multiply both sides of

the equation by .
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The solution is . The excluded value

is .

3. The least common denominator is .

Multiply both sides of the equation by
.

The solution is . The excluded value is
.
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Try It 5

Solve . State the excluded

values.

Solution

Example 7: Solving a Rational Equation
with Factored Denominators and Stating
Excluded Values

Solve the rational equation after factoring the

denominators: .

State the excluded values.
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Solution

We must factor the denominator . We

recognize this as the difference of squares, and factor it
as . Thus, the LCD that contains

each denominator is . Multiply the

whole equation by the LCD, cancel out the
denominators, and solve the remaining equation.

The solution is . The excluded values are
and .

Try It 6

Solve the rational equation:

.

Solution
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22. Finding a Linear Equation

Perhaps the most familiar form of a linear equation is the slope-
intercept form, written as , where
and . Let us begin with the slope.

The Slope of a Line

The slope of a line refers to the ratio of the vertical change in y
over the horizontal change in x between any two points on a line. It
indicates the direction in which a line slants as well as its steepness.
Slope is sometimes described as rise over run.

If the slope is positive, the line slants to the right. If the slope is
negative, the line slants to the left. As the slope increases, the line
becomes steeper. Some examples are shown in Figure 2. The lines

indicate the following slopes: , , and .
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Figure 2

A General Note: The Slope of a Line

The slope of a line, m, represents the change in y over
the change in x. Given two points, and

, the following formula determines the slope

of a line containing these points:
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Example 7: Finding the Slope of a Line
Given Two Points

Find the slope of a line that passes through the points
and .

Solution

We substitute the y-values and the x-values into the
formula.
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The slope is .

Analysis of the Solution

It does not matter which point is called or

. As long as we are consistent with the order of the y terms and
the order of the x terms in the numerator and denominator, the
calculation will yield the same result.

Try It 7

Find the slope of the line that passes through the points
and .

Solution
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Example 8: Identifying the Slope and
y-intercept of a Line Given an Equation

Identify the slope and y-intercept, given the equation

.

Solution

As the line is in form, the given line

has a slope of . The y-intercept is

.

Analysis of the Solution

The y-intercept is the point at which the line crosses the y-axis. On
the y-axis, . We can always identify the y-intercept when
the line is in slope-intercept form, as it will always equal b. Or, just
substitute and solve for y.
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The Point-Slope Formula

Given the slope and one point on a line, we can find the equation of
the line using the point-slope formula.

This is an important formula, as it will be used in other areas of
college algebra and often in calculus to find the equation of a
tangent line. We need only one point and the slope of the line to use
the formula. After substituting the slope and the coordinates of one
point into the formula, we simplify it and write it in slope-intercept
form.

A General Note: The Point-Slope
Formula

Given one point and the slope, the point-slope
formula will lead to the equation of a line:

Example 9: Finding the Equation of a
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Line Given the Slope and One Point

Write the equation of the line with slope
and passing through the point . Write the final

equation in slope-intercept form.

Solution

Using the point-slope formula, substitute for m

and the point for .
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Analysis of the Solution

Note that any point on the line can be used to find the equation. If
done correctly, the same final equation will be obtained.

Try It 8

Given , find the equation of the line in slope-
intercept form passing through the point .

Solution

Example 10: Finding the Equation of a
Line Passing Through Two Given Points

Find the equation of the line passing through the
points and . Write the final equation in

slope-intercept form.
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Solution

First, we calculate the slope using the slope formula
and two points.

Next, we use the point-slope formula with the slope

of , and either point. Let’s pick the point for

.

In slope-intercept form, the equation is written as

.
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Analysis of the Solution

To prove that either point can be used, let us use the second point
and see if we get the same equation.

We see that the same line will be obtained using either point. This
makes sense because we used both points to calculate the slope.

Standard Form of a Line

Another way that we can represent the equation of a line is in
standard form. Standard form is given as

where , , and are integers. The x- and y-terms are on one
side of the equal sign and the constant term is on the other side.

Example 11: Finding the Equation of a
Line and Writing It in Standard Form

Find the equation of the line with and
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passing through the point . Write the

equation in standard form.

Solution

We begin using the point-slope formula.

From here, we multiply through by 2, as no fractions
are permitted in standard form, and then move both
variables to the left aside of the equal sign and move the
constants to the right.

This equation is now written in standard form.
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Try It 9

Find the equation of the line in standard form with slope

and passing through the point .

Solution

Vertical and Horizontal Lines

The equations of vertical and horizontal lines do not require any of
the preceding formulas, although we can use the formulas to prove
that the equations are correct. The equation of a vertical line is
given as

where c is a constant. The slope of a vertical line is undefined, and
regardless of the y-value of any point on the line, the x-coordinate
of the point will be c.

Suppose that we want to find the equation of a line containing
the following points: , and

. First, we will find the slope.

Zero in the denominator means that the slope is undefined and,
therefore, we cannot use the point-slope formula. However, we can
plot the points. Notice that all of the x-coordinates are the same and
we find a vertical line through .
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The equation of a horizontal line is given as

where c is a constant. The slope of a horizontal line is zero, and for
any x-value of a point on the line, the y-coordinate will be c.

Suppose we want to find the equation of a line that contains the
following set of points: , and

. We can use the point-slope formula. First, we find the

slope using any two points on the line.

Use any point for in the formula, or use the y-intercept.

The graph is a horizontal line through . Notice that all of

the y-coordinates are the same.
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Figure 3. The line x = −3 is a vertical line. The line y = −2 is a horizontal line.

Example 12: Finding the Equation of a
Line Passing Through the Given Points

Find the equation of the line passing through the
given points:

and

.
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Solution

The x-coordinate of both points is 1. Therefore, we
have a vertical line, .

Try It 10

Find the equation of the line passing through

and .

Solution
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23. Determining Whether
Graphs of Lines are Parallel or
Perpendicular

Figure 4. Parallel lines
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Parallel lines have the same slope and different y-intercepts. Lines
that are parallel to each other will never intersect. For example,
Figure 4 shows the graphs of various lines with the same slope,

.
All of the lines shown in the graph are parallel because they have

the same slope and different y-intercepts.
Lines that are perpendicular intersect to form a -angle. The

slope of one line is the negative reciprocal of the other. We can
show that two lines are perpendicular if the product of the two
slopes is . For example, Figure 4 shows
the graph of two perpendicular lines. One line has a slope of 3; the

other line has a slope of .

Figure 5. Perpendicular lines
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Example 13: Graphing Two Equations,
and Determining Whether the Lines are
Parallel, Perpendicular, or Neither

Graph the equations of the given lines, and state
whether they are parallel, perpendicular, or neither:

and .

Solution

The first thing we want to do is rewrite the equations
so that both equations are in slope-intercept form.

First equation:

Second equation:
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See the graph of both lines in Figure 6.

Figure 6

From the graph, we can see that the lines appear
perpendicular, but we must compare the slopes.

The slopes are negative reciprocals of each other,
confirming that the lines are perpendicular.
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Try It 11

Graph the two lines and determine whether they are
parallel, perpendicular, or neither: and

.

Solution

Writing the Equations of Lines Parallel or
Perpendicular to a Given Line

As we have learned, determining whether two lines are parallel
or perpendicular is a matter of finding the slopes. To write the
equation of a line parallel or perpendicular to another line, we follow
the same principles as we do for finding the equation of any line.
After finding the slope, use the point-slope formula to write the
equation of the new line.

How To: Given an equation for a line,
write the equation of a line parallel or
perpendicular to it.

1. Find the slope of the given line. The easiest way
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to do this is to write the equation in slope-
intercept form.

2. Use the slope and the given point with the
point-slope formula.

3. Simplify the line to slope-intercept form and
compare the equation to the given line.

Example 14: Writing the Equation of a
Line Parallel to a Given Line Passing
Through a Given Point

Write the equation of line parallel to a
and passing through the point .

Solution

First, we will write the equation in slope-intercept
form to find the slope.
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The slope is . The y-intercept is , but

that really does not enter into our problem, as the only
thing we need for two lines to be parallel is the same
slope. The one exception is that if the y-intercepts are
the same, then the two lines are the same line. The next
step is to use this slope and the given point with the
point-slope formula.

The equation of the line is .
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Figure 7

Try It 12

Find the equation of the line parallel to

and passing through the point .

Solution
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Example 15: Finding the Equation of a
Line Perpendicular to a Given Line
Passing Through a Given Point

Find the equation of the line perpendicular to
.

Solution

The first step is to write the equation in slope-
intercept form.

We see that the slope is . This means that

the slope of the line perpendicular to the given line is

the negative reciprocal, or . Next, we use the
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point-slope formula with this new slope and the given
point.
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24. Key Concepts & Glossary

Key Concepts

• We can solve linear equations in one variable in the form
using standard algebraic properties.

• A rational expression is a quotient of two polynomials. We use
the LCD to clear the fractions from an equation.

• All solutions to a rational equation should be verified within
the original equation to avoid an undefined term, or zero in the
denominator.

• Given two points, we can find the slope of a line using the
slope formula.

• We can identify the slope and y-intercept of an equation in
slope-intercept form.

• We can find the equation of a line given the slope and a point.
• We can also find the equation of a line given two points. Find

the slope and use the point-slope formula.
• The standard form of a line has no fractions.
• Horizontal lines have a slope of zero and are defined as

, where c is a constant.
• Vertical lines have an undefined slope (zero in the

denominator), and are defined as , where c is a
constant.

• Parallel lines have the same slope and different y-intercepts.
• Perpendicular lines have slopes that are negative reciprocals of

each other unless one is horizontal and the other is vertical.
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Glossary

conditional equation an equation that is true for some values of the
variable

identity equation an equation that is true for all values of the
variable

inconsistent equation an equation producing a false result
linear equation an algebraic equation in which each term is either

a constant or the product of a constant and the first power of a
variable

solution set the set of all solutions to an equation
slope the change in y-values over the change in x-values
rational equation an equation consisting of a fraction of

polynomials
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25. Section Exercises

1. What does it mean when we say that two lines are parallel?
2. What is the relationship between the slopes of perpendicular

lines (assuming neither is horizontal nor vertical)?
3. How do we recognize when an equation, for example

, will be a straight line (linear) when graphed?
4. What does it mean when we say that a linear equation is

inconsistent?

5. When solving the following equation:

, explain why we must exclude and as possible
solutions from the solution set.

For the following exercises, solve the equation for .
6.
7.
8.

9.

10.

11.

12.

13.

14.

15.

For the following exercises, solve each rational equation for .
State all x-values that are excluded from the solution set.
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16.

17.

18.

19.

20.

21.

For the following exercises, find the equation of the line using the
point-slope formula. Write all the final equations using the slope-
intercept form.

22. with a slope of

23. with a slope of

24. x-intercept is 1, and

25. y-intercept is 2, and

26. and

27.

28. parallel to and passes through the point

29. perpendicular to and passes through the point

.

For the following exercises, find the equation of the line using the
given information.

30. and

31. and
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32. The slope is undefined and it passes through the point

.
33. The slope equals zero and it passes through the point

.

34. The slope is and it passes through the point .

35. and

For the following exercises, graph the pair of equations on the
same axes, and state whether they are parallel, perpendicular, or
neither.

36.

37.

38.

39.

For the following exercises, find the slope of the line that passes
through the given points.

40. and

41. and

42. and

43. and

44. and

For the following exercises, find the slope of the lines that pass
through each pair of points and determine whether the lines are
parallel or perpendicular.
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45.

46.

For the following exercises, express the equations in slope
intercept form (rounding each number to the thousandths place).
Enter this into a graphing calculator as Y1, then adjust the ymin
and ymax values for your window to include where the y-intercept
occurs. State your ymin and ymax values.

47.
48.

49.

50. Starting with the point-slope formula
, solve this expression for in terms of

, and .
51. Starting with the standard form of an equation

solve this expression for y in terms of
, and . Then put the expression in slope-intercept form.

52. Use the above derived formula to put the following standard
equation in slope intercept form: .

53. Given that the following coordinates are the vertices of a
rectangle, prove that this truly is a rectangle by showing the slopes
of the sides that meet are perpendicular.

, and

54. Find the slopes of the diagonals in the previous exercise. Are
they perpendicular?

55. The slope for a wheelchair ramp for a home has to be . If

the vertical distance from the ground to the door bottom is 2.5 ft,
find the distance the ramp has to extend from the home in order to
comply with the needed slope.
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56. If the profit equation for a small business selling number of
item one and number of item two is , find the
value when .

For the following exercises, use this scenario: The cost of renting
a car is $45/wk plus $0.25/mi traveled during that week. An
equation to represent the cost would be , where

is the number of miles traveled.
57. What is your cost if you travel 50 mi?
58. If your cost were , how many miles were you charged

for traveling?
59. Suppose you have a maximum of $100 to spend for the car

rental. What would be the maximum number of miles you could
travel?
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PART IV

MODELS AND
APPLICATIONS
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26. Introduction: Models and
Applicaitons

Learning Objectives

By the end of this section, you will be able to:

• Set up a linear equation to solve a real-world
application.

• Use a formula to solve a real-world application.

Figure 1. Credit: Kevin Dooley
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Josh is hoping to get an A in his college algebra class. He has scores
of 75, 82, 95, 91, and 94 on his first five tests. Only the final exam
remains, and the maximum of points that can be earned is 100. Is
it possible for Josh to end the course with an A? A simple linear
equation will give Josh his answer.

Many real-world applications can be modeled by linear equations.
For example, a cell phone package may include a monthly service
fee plus a charge per minute of talk-time; it costs a widget
manufacturer a certain amount to produce x widgets per month
plus monthly operating charges; a car rental company charges a
daily fee plus an amount per mile driven. These are examples of
applications we come across every day that are modeled by linear
equations. In this section, we will set up and use linear equations to
solve such problems.
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27. Setting up a Linear
Equation to Solve a
Real-World Application

To set up or model a linear equation to fit a real-world application,
we must first determine the known quantities and define the
unknown quantity as a variable. Then, we begin to interpret the
words as mathematical expressions using mathematical symbols.
Let us use the car rental example above. In this case, a known cost,
such as $0.10/mi, is multiplied by an unknown quantity, the number
of miles driven. Therefore, we can write . This expression
represents a variable cost because it changes according to the
number of miles driven.

If a quantity is independent of a variable, we usually just add or
subtract it, according to the problem. As these amounts do not
change, we call them fixed costs. Consider a car rental agency that
charges $0.10/mi plus a daily fee of $50. We can use these quantities
to model an equation that can be used to find the daily car rental
cost .

When dealing with real-world applications, there are certain
expressions that we can translate directly into math. The table lists
some common verbal expressions and their equivalent
mathematical expressions.
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Verbal Translation to Math
Operations

One number exceeds another by a

Twice a number

One number is a more than another number

One number is a less than twice another number

The product of a number and a, decreased by b

The quotient of a number and the number plus a
is three times the number

The product of three times a number and the
number decreased by b is c

How To: Given a real-world problem,
model a linear equation to fit it.

1. Identify known quantities.
2. Assign a variable to represent the unknown

quantity.
3. If there is more than one unknown quantity,

find a way to write the second unknown in terms
of the first.

4. Write an equation interpreting the words as
mathematical operations.

5. Solve the equation. Be sure the solution can be
explained in words, including the units of
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measure.

Example 1: Modeling a Linear Equation
to Solve an Unknown Number Problem

Find a linear equation to solve for the following
unknown quantities: One number exceeds another
number by and their sum is . Find the two
numbers.

Solution

Let equal the first number. Then, as the second
number exceeds the first by 17, we can write the second
number as . The sum of the two numbers is 31.
We usually interpret the word is as an equal sign.
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The two numbers are and .

Try It 1

Find a linear equation to solve for the following unknown
quantities: One number is three more than twice another
number. If the sum of the two numbers is , find the
numbers.

Solution

Example 2: Setting Up a Linear
Equation to Solve a Real-World
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Application

There are two cell phone companies that offer
different packages. Company A charges a monthly
service fee of $34 plus $.05/min talk-time. Company B
charges a monthly service fee of $40 plus $.04/min talk-
time.

1. Write a linear equation that models the
packages offered by both companies.

2. If the average number of minutes used each
month is 1,160, which company offers the better
plan?

3. If the average number of minutes used each
month is 420, which company offers the better
plan?

4. How many minutes of talk-time would yield
equal monthly statements from both companies?

Solution

1. The model for Company A can be written as
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. This includes the variable
cost of plus the monthly service charge of
$34. Company B’s package charges a higher
monthly fee of $40, but a lower variable cost of

. Company B’s model can be written as
.

2. If the average number of minutes used each
month is 1,160, we have the following:

So, Company B offers the lower monthly cost of
$86.40 as compared with the $92 monthly cost
offered by Company A when the average number
of minutes used each month is 1,160.

3. If the average number of minutes used each
month is 420, we have the following:

154 | Setting up a Linear Equation to Solve a Real-World Application



If the average number of minutes used each
month is 420, then Company A offers a lower
monthly cost of $55 compared to Company B’s
monthly cost of $56.80.

4. To answer the question of how many talk-time
minutes would yield the same bill from both
companies, we should think about the problem in
terms of coordinates: At what point are

both the x-value and the y-value equal? We can
find this point by setting the equations equal to
each other and solving for x.

Check the x-value in each equation.

Therefore, a monthly average of 600 talk-time
minutes renders the plans equal.
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Figure 2

Try It 2

Find a linear equation to model this real-world
application: It costs ABC electronics company $2.50 per
unit to produce a part used in a popular brand of desktop
computers. The company has monthly operating expenses
of $350 for utilities and $3,300 for salaries. What are the
company’s monthly expenses?

Solution
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28. Using a Formula to Solve a
Real-World Application

Many applications are solved using known formulas. The problem is
stated, a formula is identified, the known quantities are substituted
into the formula, the equation is solved for the unknown, and the
problem’s question is answered. Typically, these problems involve
two equations representing two trips, two investments, two areas,
and so on. Examples of formulas include the area of a rectangular
region, ; the perimeter of a rectangle,

; and the volume of a rectangular solid,
. When there are two unknowns, we find a way to

write one in terms of the other because we can solve for only one
variable at a time.

Example 3: Solving an Application
Using a Formula

It takes Andrew 30 min to drive to work in the
morning. He drives home using the same route, but it
takes 10 min longer, and he averages 10 mi/h less than
in the morning. How far does Andrew drive to work?
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Solution

This is a distance problem, so we can use the formula
, where distance equals rate multiplied by time.

Note that when rate is given in mi/h, time must be
expressed in hours. Consistent units of measurement
are key to obtaining a correct solution.

First, we identify the known and unknown quantities.

Andrew’s morning drive to work takes 30 min, or h at

rate . His drive home takes 40 min, or h, and his

speed averages 10 mi/h less than the morning drive.
Both trips cover distance . A table, such as the one
below, is often helpful for keeping track of information
in these types of problems.

To Work

To Home

Write two equations, one for each trip.
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As both equations equal the same distance, we set
them equal to each other and solve for r.

We have solved for the rate of speed to work, 40 mph.
Substituting 40 into the rate on the return trip yields 30
mi/h. Now we can answer the question. Substitute the
rate back into either equation and solve for d.

The distance between home and work is 20 mi.

Analysis of the Solution

Note that we could have cleared the fractions in the equation by
multiplying both sides of the equation by the LCD to solve for .
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Try It 3

On Saturday morning, it took Jennifer 3.6 h to drive to
her mother’s house for the weekend. On Sunday evening,
due to heavy traffic, it took Jennifer 4 h to return home. Her
speed was 5 mi/h slower on Sunday than on Saturday.
What was her speed on Sunday?

Solution

Example 4: Solving a Perimeter Problem

The perimeter of a rectangular outdoor patio is ft.
The length is ft greater than the width. What are the
dimensions of the patio?
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Solution

The perimeter formula is standard:
. We have two unknown quantities,

length and width. However, we can write the length in
terms of the width as . Substitute the
perimeter value and the expression for length into the
formula. It is often helpful to make a sketch and label
the sides.

Figure 3

Now we can solve for the width and then calculate the
length.
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The dimensions are ft and ft.

Try It 4

Find the dimensions of a rectangle given that the
perimeter is cm and the length is 1 cm more than
twice the width.

Solution
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Example 5: Solving an Area Problem

The perimeter of a tablet of graph paper is 48 in2. The
length is in. more than the width. Find the area of the
graph paper.

Solution

The standard formula for area is ;
however, we will solve the problem using the perimeter
formula. The reason we use the perimeter formula is
because we know enough information about the
perimeter that the formula will allow us to solve for one
of the unknowns. As both perimeter and area use length
and width as dimensions, they are often used together
to solve a problem such as this one.

We know that the length is 6 in. more than the width,
so we can write length as . Substitute
the value of the perimeter and the expression for length
into the perimeter formula and find the length.
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Now, we find the area given the dimensions of
in. and in.

The area is in2.

Try It 5

A game room has a perimeter of 70 ft. The length is five
more than twice the width. How many ft2 of new carpeting
should be ordered?

Solution
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Example 6: Solving a Volume Problem

Find the dimensions of a shipping box given that the
length is twice the width, the height is inches, and the
volume is 1,600 in.3.

Solution

The formula for the volume of a box is given as
, the product of length, width, and

height. We are given that , and .
The volume is cubic inches.

The dimensions are in., in., and
in.
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Analysis of the Solution

Note that the square root of would result in a positive and a

negative value. However, because we are describing width, we can
use only the positive result.
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29. Key Concepts & Glossary

Key Concepts

• A linear equation can be used to solve for an unknown in a
number problem.

• Applications can be written as mathematical problems by
identifying known quantities and assigning a variable to
unknown quantities.

• There are many known formulas that can be used to solve
applications. Distance problems, for example, are solved using
the formula.

• Many geometry problems are solved using the perimeter
formula , the area formula , or
the volume formula .

Glossary

area in square units, the area formula used in this section is used
to find the area of any two-dimensional rectangular region:

perimeter in linear units, the perimeter formula is used to find
the linear measurement, or outside length and width, around a two-
dimensional regular object; for a rectangle:

volume in cubic units, the volume measurement includes length,
width, and depth:
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30. Section Exercises

1. To set up a model linear equation to fit real-world applications,
what should always be the first step?

2. Use your own words to describe this equation where n is a
number:

3. If the total amount of money you had to invest was $2,000 and
you deposit amount in one investment, how can you represent
the remaining amount?

4. If a man sawed a 10-ft board into two sections and one section
was ft long, how long would the other section be in terms of ?

5. If Bill was traveling mi/h, how would you represent Daemon’s
speed if he was traveling 10 mi/h faster?

For the following exercises, use the information to find a linear
algebraic equation model to use to answer the question being asked.

6. Mark and Don are planning to sell each of their marble
collections at a garage sale. If Don has 1 more than 3 times the
number of marbles Mark has, how many does each boy have to sell
if the total number of marbles is 113?

7. Beth and Ann are joking that their combined ages equal Sam’s
age. If Beth is twice Ann’s age and Sam is 69 yr old, what are Beth
and Ann’s ages?

8. Ben originally filled out 8 more applications than Henry. Then
each boy filled out 3 additional applications, bringing the total to 28.
How many applications did each boy originally fill out?

For the following exercises, use this scenario: Two different
telephone carriers offer the following plans that a person is
considering. Company A has a monthly fee of $20 and charges of
$.05/min for calls. Company B has a monthly fee of $5 and charges
$.10/min for calls.

9. Find the model of the total cost of Company A’s plan, using
for the minutes.
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10. Find the model of the total cost of Company B’s plan, using
for the minutes.

11. Find out how many minutes of calling would make the two
plans equal.

12. If the person makes a monthly average of 200 min of calls,
which plan should for the person choose?

For the following exercises, use this scenario: A wireless carrier
offers the following plans that a person is considering. The Family
Plan: $90 monthly fee, unlimited talk and text on up to 5 lines, and
data charges of $40 for each device for up to 2 GB of data per
device. The Mobile Share Plan: $120 monthly fee for up to 10 devices,
unlimited talk and text for all the lines, and data charges of $35 for
each device up to a shared total of 10 GB of data. Use for the
number of devices that need data plans as part of their cost.

13. Find the model of the total cost of the Family Plan.
14. Find the model of the total cost of the Mobile Share Plan.
15. Assuming they stay under their data limit, find the number of

devices that would make the two plans equal in cost.
16. If a family has 3 smart phones, which plan should they choose?
For exercises 17 and 18, use this scenario: A retired woman has

$50,000 to invest but needs to make $6,000 a year from the interest
to meet certain living expenses. One bond investment pays 15%
annual interest. The rest of it she wants to put in a CD that pays 7%.

17. If we let be the amount the woman invests in the 15% bond,
how much will she be able to invest in the CD?

18. Set up and solve the equation for how much the woman should
invest in each option to sustain a $6,000 annual return.

19. Two planes fly in opposite directions. One travels 450 mi/h
and the other 550 mi/h. How long will it take before they are 4,000
mi apart?

20. Ben starts walking along a path at 4 mi/h. One and a half hours
after Ben leaves, his sister Amanda begins jogging along the same
path at 6 mi/h. How long will it be before Amanda catches up to
Ben?

21. Fiora starts riding her bike at 20 mi/h. After a while, she slows
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down to 12 mi/h, and maintains that speed for the rest of the trip.
The whole trip of 70 mi takes her 4.5 h. For what distance did she
travel at 20 mi/h?

22. A chemistry teacher needs to mix a 30% salt solution with a
70% salt solution to make 20 qt of a 40% salt solution. How many
quarts of each solution should the teacher mix to get the desired
result?

23. Paul has $20,000 to invest. His intent is to earn 11% interest
on his investment. He can invest part of his money at 8% interest
and part at 12% interest. How much does Paul need to invest in each
option to make get a total 11% return on his $20,000?

For the following exercises, use this scenario: A truck rental
agency offers two kinds of plans. Plan A charges $75/wk plus $.10/
mi driven. Plan B charges $100/wk plus $.05/mi driven.

24. Write the model equation for the cost of renting a truck with
plan A.

25. Write the model equation for the cost of renting a truck with
plan B.

26. Find the number of miles that would generate the same cost
for both plans.

27. If Tim knows he has to travel 300 mi, which plan should he
choose?

For the following exercises, use the given formulas to answer the
questions.

28. is used to find the principal amount

P deposited, earning r% interest, for t years. Use this to find what
principal amount P David invested at a 3% rate for 20 yr if

.

29. The formula relates force (F), velocity (v), mass

(m), and resistance (R). Find when , , and
.

30. indicates that force (F) equals mass (m) times
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acceleration (a). Find the acceleration of a mass of 50 kg if a force of
12 N is exerted on it.

31. is the formula for an infinite series sum. If

the sum is 5, find .
For the following exercises, solve for the given variable in the

formula. After obtaining a new version of the formula, you will use it
to solve a question.

32. Solve for W:
33. Use the formula from the previous question to find the width,

, of a rectangle whose length is 15 and whose perimeter is 58.

34. Solve for

35. Use the formula from the previous question to find when
.

36. Solve for in the slope-intercept formula:
37. Use the formula from the previous question to find when

the coordinates of the point are and .

38. The area of a trapezoid is given by

. Use the formula to find the area of a trapezoid with
.

39. Solve for h:

40. Use the formula from the previous question to find the height
of a trapezoid with .

41. Find the dimensions of an American football field. The length
is 200 ft more than the width, and the perimeter is 1,040 ft. Find the
length and width. Use the perimeter formula .

42. Distance equals rate times time, . Find the distance
Tom travels if he is moving at a rate of 55 mi/h for 3.5 h.

43. Using the formula in the previous exercise, find the distance
that Susan travels if she is moving at a rate of 60 mi/h for 6.75 h.
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44. What is the total distance that two people travel in 3 h if one
of them is riding a bike at 15 mi/h and the other is walking at 3 mi/
h?

45. If the area model for a triangle is , find the area

of a triangle with a height of 16 in. and a base of 11 in.

46. Solve for h:

47. Use the formula from the previous question to find the height
to the nearest tenth of a triangle with a base of 15 and an area of 215.

48. The volume formula for a cylinder is . Using the

symbol in your answer, find the volume of a cylinder with a radius,
, of 4 cm and a height of 14 cm.
49. Solve for h:

50. Use the formula from the previous question to find the height
of a cylinder with a radius of 8 and a volume of

51. Solve for r:

52. Use the formula from the previous question to find the radius
of a cylinder with a height of 36 and a volume of .

53. The formula for the circumference of a circle is .
Find the circumference of a circle with a diameter of 12 in. (diameter
= 2r). Use the symbol in your final answer.

54. Solve the formula from the previous question for . Notice
why is sometimes defined as the ratio of the circumference to its
diameter.
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PART V

COMPLEX NUMBERS
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31. Introduction to Complex
Numbers

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Express square roots of negative numbers as
multiples of i.

• Plot complex numbers on the complex plane.
• Add and subtract complex numbers.
• Multiply and divide complex numbers.

The study of mathematics continuously builds upon itself. Negative
integers, for example, fill a void left by the set of positive integers.
The set of rational numbers, in turn, fills a void left by the set of
integers. The set of real numbers fills a void left by the set of rational
numbers. Not surprisingly, the set of real numbers has voids as well.
For example, we still have no solution to equations such as

Our best guesses might be +2 or –2. But if we test +2 in this equation,
it does not work. If we test –2, it does not work. If we want to have
a solution for this equation, we will have to go farther than we have
so far. After all, to this point we have described the square root of a
negative number as undefined. Fortunately, there is another system
of numbers that provides solutions to problems such as these. In
this section, we will explore this number system and how to work
within it.
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32. Express square roots of
negative numbers as multiples
of i

We know how to find the square root of any positive real number. In
a similar way, we can find the square root of a negative number. The
difference is that the root is not real. If the value in the radicand is
negative, the root is said to be an imaginary number. The imaginary
number is defined as the square root of negative 1.

So, using properties of radicals,

We can write the square root of any negative number as a multiple
of i. Consider the square root of –25.

We use 5i and not

because the principal root of 25 is the positive root.

Figure 1

A complex number is the sum of a real number and an imaginary
number. A complex number is expressed in standard form when
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written a + bi where a is the real part and bi is the imaginary part.
For example,

is a complex number. So, too, is

.
Imaginary numbers are distinguished from real numbers because

a squared imaginary number produces a negative real number.
Recall, when a positive real number is squared, the result is a
positive real number and when a negative real number is squared,
again, the result is a positive real number. Complex numbers are a
combination of real and imaginary numbers.

A General Note: Imaginary and
Complex Numbers

A complex number is a number of the form

where

• a is the real part of the complex number.
• bi is the imaginary part of the complex number.

If

, then

is a real number. If
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and b is not equal to 0, the complex number is called an
imaginary number. An imaginary number is an even
root of a negative number.

How To: Given an imaginary number, express it in
standard form.

1. Write

as

.
2. Express

as i.
3. Write

in simplest form.
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Example 1: Expressing an Imaginary
Number in Standard Form

Express

in standard form.

Solution

In standard form, this is

.

Try It 1

Express
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in standard form.

Solution

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=59
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33. Plot complex numbers on
the complex plane

We cannot plot complex numbers on a number line as we might
real numbers. However, we can still represent them graphically.
To represent a complex number we need to address the two
components of the number. We use the complex plane, which is
a coordinate system in which the horizontal axis represents the
real component and the vertical axis represents the imaginary
component. Complex numbers are the points on the plane,
expressed as ordered pairs (a, b), where a represents the coordinate
for the horizontal axis and b represents the coordinate for the
vertical axis.
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Figure 2

Let’s consider the number

. The real part of the complex number is –2 and the imaginary
part is 3i. We plot the ordered pair

to represent the complex number

.
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A General Note: Complex Plane

Figure 3

In the complex plane, the horizontal axis is the real
axis, and the vertical axis is the imaginary axis.

How To: Given a complex number,
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represent its components on the complex
plane.

1. Determine the real part and the imaginary part
of the complex number.

2. Move along the horizontal axis to show the real
part of the number.

3. Move parallel to the vertical axis to show the
imaginary part of the number.

4. Plot the point.

Example 2: Plotting a Complex Number
on the Complex Plane

Plot the complex number

on the complex plane.
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Solution

The real part of the complex number is 3, and the
imaginary part is –4i. We plot the ordered pair

.

Figure 4
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Try It 2

Plot the complex number

on the complex plane.

Solution
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34. Add and subtract complex
numbers

Just as with real numbers, we can perform arithmetic operations
on complex numbers. To add or subtract complex numbers, we
combine the real parts and combine the imaginary parts.

A General Note: Addition and
Subtraction of Complex Numbers

Adding complex numbers:

Subtracting complex numbers:

How To: Given two complex numbers,
find the sum or difference.

1. Identify the real and imaginary parts of each
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number.
2. Add or subtract the real parts.
3. Add or subtract the imaginary parts.

Example 3: Adding Complex Numbers

Add

and

.

Solution

We add the real parts and add the imaginary parts.
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Try It 3

Subtract

from

.

Solution

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=61

Add and subtract complex numbers | 189



190 | Add and subtract complex numbers



35. Multiply and divide
complex numbers

Multiplying Complex Numbers

Multiplying complex numbers is much like multiplying binomials.
The major difference is that we work with the real and imaginary
parts separately.

Example 4: Multiplying a Complex
Number by a Real Number

Figure 5

Let’s begin by multiplying a complex number by a real
number. We distribute the real number just as we would
with a binomial. So, for example,
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How To: Given a complex number and a
real number, multiply to find the product.

1. Use the distributive property.
2. Simplify.

Example 5: Multiplying a Complex
Number by a Real Number

Find the product

.

Solution

Distribute the 4.
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Try It 4

Find the product

.

Solution

Multiplying Complex Numbers Together

Now, let’s multiply two complex numbers. We can use either the
distributive property or the FOIL method. Recall that FOIL is an
acronym for multiplying First, Outer, Inner, and Last terms together.
Using either the distributive property or the FOIL method, we get

Because

, we have

To simplify, we combine the real parts, and we combine the
imaginary parts.
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How To: Given two complex numbers,
multiply to find the product.

1. Use the distributive property or the FOIL
method.

2. Simplify.

Example 6: Multiplying a Complex
Number by a Complex Number

Multiply

.
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Solution

Use

Try It 5

Multiply

.

Solution

https://youtu.be/O9xQaIi0NX0

Dividing Complex Numbers

Division of two complex numbers is more complicated than
addition, subtraction, and multiplication because we cannot divide
by an imaginary number, meaning that any fraction must have a
real-number denominator. We need to find a term by which we can
multiply the numerator and the denominator that will eliminate the
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imaginary portion of the denominator so that we end up with a
real number as the denominator. This term is called the complex
conjugate of the denominator, which is found by changing the sign
of the imaginary part of the complex number. In other words, the
complex conjugate of

is

.
Note that complex conjugates have a reciprocal relationship: The

complex conjugate of

is

, and the complex conjugate of

is

. Further, when a quadratic equation with real coefficients has
complex solutions, the solutions are always complex conjugates of
one another.

Suppose we want to divide

by

, where neither a nor b equals zero. We first write the division as a
fraction, then find the complex conjugate of the denominator, and
multiply.

Multiply the numerator and denominator by the complex conjugate
of the denominator.
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Apply the distributive property.

Simplify, remembering that

.

A General Note: The Complex
Conjugate

The complex conjugate of a complex number

is

. It is found by changing the sign of the imaginary part
of the complex number. The real part of the number is
left unchanged.

• When a complex number is multiplied by its
complex conjugate, the result is a real number.

• When a complex number is added to its
complex conjugate, the result is a real number.
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Example 7: Finding Complex
Conjugates

Find the complex conjugate of each number.

1.
2.

Solution

1. The number is already in the form .

The complex conjugate is

, or

.
2. We can rewrite this number in the form

as

. The complex conjugate is
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, or

. This can be written simply as

.

Analysis of the Solution

Although we have seen that we can find the complex conjugate of
an imaginary number, in practice we generally find the complex
conjugates of only complex numbers with both a real and an
imaginary component. To obtain a real number from an imaginary
number, we can simply multiply by i.

How To: Given two complex numbers,
divide one by the other.

1. Write the division problem as a fraction.
2. Determine the complex conjugate of the

denominator.
3. Multiply the numerator and denominator of the

fraction by the complex conjugate of the
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denominator.
4. Simplify.

Example 8: Dividing Complex Numbers

Divide

by

.

Solution

We begin by writing the problem as a fraction.

Then we multiply the numerator and denominator by
the complex conjugate of the denominator.

200 | Multiply and divide complex numbers



To multiply two complex numbers, we expand the
product as we would with polynomials (the process
commonly called FOIL).

Note that this expresses the quotient in standard
form.

Example 9: Substituting a Complex
Number into a Polynomial Function

Let

. Evaluate

.
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Solution

Figure 6

Substitute

into the function

and simplify.

Analysis of the Solution

We write

. Notice that the input is

and the output is

.
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Try It 6

Let

. Evaluate

.

Solution

Example 10: Substituting an Imaginary
Number in a Rational Function

Let

. Evaluate

.
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Solution

Substitute

and simplify.

Try It 7

Let

. Evaluate

.

Solution

204 | Multiply and divide complex numbers



A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=62

Simplifying Powers of i

The powers of i are cyclic. Let’s look at what happens when we raise
i to increasing powers.

We can see that when we get to the fifth power of i, it is equal to
the first power. As we continue to multiply i by itself for increasing
powers, we will see a cycle of 4. Let’s examine the next 4 powers of
i.
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Example 11: Simplifying Powers of i

Evaluate

.

Solution

Since

, we can simplify the problem by factoring out as many
factors of

as possible. To do so, first determine how many times 4
goes into 35:

.
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Q & A

Can we write

in other helpful ways?

As we saw in Example 11, we reduced

to

by dividing the exponent by 4 and using the remainder to
find the simplified form. But perhaps another
factorization of

may be more useful. The table below shows some other
possible factorizations.

Factorizati
on of

Reduced
form

Simplified
form

Each of these will eventually result in the answer we
obtained above but may require several more steps than
our earlier method.
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36. Key Concepts & Glossary

Key Concepts

• The square root of any negative number can be written as a
multiple of i.

• To plot a complex number, we use two number lines, crossed
to form the complex plane. The horizontal axis is the real axis,
and the vertical axis is the imaginary axis.

• Complex numbers can be added and subtracted by combining
the real parts and combining the imaginary parts.

• Complex numbers can be multiplied and divided.
• To multiply complex numbers, distribute just as with

polynomials.
• To divide complex numbers, multiply both the numerator and

denominator by the complex conjugate of the denominator to
eliminate the complex number from the denominator.

• The powers of i are cyclic, repeating every fourth one.

Glossary

complex conjugate
the complex number in which the sign of the imaginary part is
changed and the real part of the number is left unchanged;
when added to or multiplied by the original complex number,
the result is a real number

complex number
the sum of a real number and an imaginary number, written in
the standard form a + bi, where a is the real part, and bi is the
imaginary part
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complex plane
a coordinate system in which the horizontal axis is used to
represent the real part of a complex number and the vertical
axis is used to represent the imaginary part of a complex
number

imaginary number
a number in the form bi where
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37. Section Exercises

1. Explain how to add complex numbers.
2. What is the basic principle in multiplication of complex

numbers?
3. Give an example to show the product of two imaginary

numbers is not always imaginary.
4. What is a characteristic of the plot of a real number in the

complex plane?
For the following exercises, evaluate the algebraic expressions.
5.

, evaluate

.
6.

, evaluate

.
7.

, evaluate

.
8.

, evaluate

.
9.

210 | Section Exercises



, evaluate

.
10.

, evaluate

.
For the following exercises, determine the number of real and

nonreal solutions for each quadratic function shown.
11.

12.
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For the following exercises, plot the complex numbers on the
complex plane.

13.

14.

15. i
16.

For the following exercises, perform the indicated operation and
express the result as a simplified complex number.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
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28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
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For the following exercises, use a calculator to help answer the
questions.

44. Evaluate

for

Predict the value if

.
45. Evaluate

for

Predict the value if

.
46. Evaluate

for

. Predict the value for

.
47. Show that a solution of

is

.
48. Show that a solution of

is

.
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For the following exercises, evaluate the expressions, writing the
result as a simplified complex number.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.
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PART VI

QUADRATIC EQUATIONS
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38. Introduction: Quadratic
Equations

Learning Objectives

By the end of this section, you will be able to:

• Solve quadratic equations by factoring.
• Solve quadratic equations by the square root

property.
• Solve quadratic equations by completing the

square.
• Solve quadratic equations by using the quadratic

formula.

Figure 1

The computer monitor on the left in Figure 1 is a 23.6-inch model
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and the one on the right is a 27-inch model. Proportionally, the
monitors appear very similar. If there is a limited amount of space
and we desire the largest monitor possible, how do we decide which
one to choose? In this section, we will learn how to solve problems
such as this using four different methods.
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39. Solving Quadratic
Equations by Factoring

An equation containing a second-degree polynomial is called a
quadratic equation. For example, equations such as

and are quadratic

equations. They are used in countless ways in the fields of
engineering, architecture, finance, biological science, and, of
course, mathematics.

Often the easiest method of solving a quadratic equation is
factoring. Factoring means finding expressions that can be
multiplied together to give the expression on one side of the
equation.

If a quadratic equation can be factored, it is written as a product
of linear terms. Solving by factoring depends on the zero-product
property, which states that if , then or
, where a and b are real numbers or algebraic expressions. In other
words, if the product of two numbers or two expressions equals
zero, then one of the numbers or one of the expressions must equal
zero because zero multiplied by anything equals zero.

Multiplying the factors expands the equation to a string of terms
separated by plus or minus signs. So, in that sense, the operation
of multiplication undoes the operation of factoring. For example,
expand the factored expression by multiplying

the two factors together.

The product is a quadratic expression. Set equal to zero,
is a quadratic equation. If we were to factor

the equation, we would get back the factors we multiplied.
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The process of factoring a quadratic equation depends on the
leading coefficient, whether it is 1 or another integer. We will look
at both situations; but first, we want to confirm that the equation is
written in standard form, , where a, b, and

c are real numbers, and . The equation

is in standard form.
We can use the zero-product property to solve quadratic

equations in which we first have to factor out the greatest common
factor (GCF), and for equations that have special factoring formulas
as well, such as the difference of squares, both of which we will see
later in this section.

A General Note: The Zero-Product
Property and Quadratic Equations

The zero-product property states

,

where a and b are real numbers or algebraic
expressions.

A quadratic equation is an equation containing a
second-degree polynomial; for example

where a, b, and c are real numbers, and if , it is
in standard form.
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Solving Quadratics with a Leading Coefficient of
1

In the quadratic equation , the leading

coefficient, or the coefficient of , is 1. We have one method of

factoring quadratic equations in this form.

How To: Given a quadratic equation
with the leading coefficient of 1, factor it.

1. Find two numbers whose product equals c and
whose sum equals b.

2. Use those numbers to write two factors of the
form , where k is one of

the numbers found in step 1. Use the numbers
exactly as they are. In other words, if the two
numbers are 1 and , the factors are

.

3. Solve using the zero-product property by
setting each factor equal to zero and solving for
the variable.
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Example 1: Factoring and Solving a
Quadratic with Leading Coefficient of 1

Factor and solve the equation: .

Solution

To factor , we look for two

numbers whose product equals and whose sum
equals 1. Begin by looking at the possible factors of .

The last pair, sums to 1, so these are the

numbers. Note that only one pair of numbers will work.
Then, write the factors.
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To solve this equation, we use the zero-product
property. Set each factor equal to zero and solve.

The two solutions are and . We can
see how the solutions relate to the graph in Figure 2.
The solutions are the x-intercepts of

.
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Figure 2
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Try It 1

Factor and solve the quadratic equation:
.

Solution

Example 2: Solve the Quadratic
Equation by Factoring

Solve the quadratic equation by factoring:
.

Solution

Find two numbers whose product equals and
whose sum equals . List the factors of .
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The numbers that add to 8 are 3 and 5. Then, write
the factors, set each factor equal to zero, and solve.

The solutions are and .

Try It 2

Solve the quadratic equation by factoring:
.

Solution
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Example 3: Using the Zero-Product
Property to Solve a Quadratic Equation
Written as the Difference of Squares

Solve the difference of squares equation using the
zero-product property: .

Solution

Recognizing that the equation represents the
difference of squares, we can write the two factors by
taking the square root of each term, using a minus sign
as the operator in one factor and a plus sign as the
operator in the other. Solve using the zero-factor
property.
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The solutions are and .

Try It 3

Solve by factoring: .

Solution

Factoring and Solving a Quadratic Equation of
Higher Order

When the leading coefficient is not 1, we factor a quadratic equation
using the method called grouping, which requires four terms. With
the equation in standard form, let’s review the grouping procedures:
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1. With the quadratic in standard form, ,

multiply .
2. Find two numbers whose product equals and whose sum

equals .
3. Rewrite the equation replacing the term with two terms

using the numbers found in step 1 as coefficients of x.
4. Factor the first two terms and then factor the last two terms.

The expressions in parentheses must be exactly the same to
use grouping.

5. Factor out the expression in parentheses.
6. Set the expressions equal to zero and solve for the variable.

Example 4: Solving a Quadratic
Equation Using Grouping

Use grouping to factor and solve the quadratic
equation: .

Solution

First, multiply . Then list the

factors of .
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The only pair of factors that sums to is .
Rewrite the equation replacing the b term, , with
two terms using 3 and 12 as coefficients of x. Factor the
first two terms, and then factor the last two terms.

Solve using the zero-product property.

The solutions are , .
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Figure 3

Try It 4

Solve using factoring by grouping:
.

Solution
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Example 5: Solving a Higher Degree
Quadratic Equation by Factoring

Solve the equation by factoring:
.

Solution

This equation does not look like a quadratic, as the
highest power is 3, not 2. Recall that the first thing we
want to do when solving any equation is to factor out
the GCF, if one exists. And it does here. We can factor
out from all of the terms and then proceed with
grouping.

Use grouping on the expression in parentheses.
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Now, we use the zero-product property. Notice that
we have three factors.

The solutions are , , and

.

Try It 5

Solve by factoring: .

Solution
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40.

When there is no linear term in the equation, another method of
solving a quadratic equation is by using the square root property,
in which we isolate the term and take the square root of the

number on the other side of the equals sign. Keep in mind that
sometimes we may have to manipulate the equation to isolate the

term so that the square root property can be used.

A General Note: The Square Root
Property

With the term isolated, the square root property

states that:

where k is a nonzero real number.

How To: Given a quadratic equation
with an term but no term, use the
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square root property to solve it.

1. Isolate the term on one side of the equal

sign.
2. Take the square root of both sides of the

equation, putting a sign before the expression
on the side opposite the squared term.

3. Simplify the numbers on the side with the
sign.

Example 6: Solving a Simple Quadratic
Equation Using the Square Root Property

Solve the quadratic using the square root property:
.
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Solution

Take the square root of both sides, and then simplify
the radical. Remember to use a

sign before the radical symbol.

The solutions are , .

Example 7: Solving a Quadratic
Equation Using the Square Root Property

Solve the quadratic equation:
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Solution

First, isolate the term. Then take the square root

of both sides.

The solutions are , .

Try It 6

Solve the quadratic equation using the square root

property: .

Solution
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41. Completing the Square

Not all quadratic equations can be factored or can be solved in their
original form using the square root property. In these cases, we may
use a method for solving a quadratic equation known as completing
the square. Using this method, we add or subtract terms to both
sides of the equation until we have a perfect square trinomial on
one side of the equal sign. We then apply the square root property.
To complete the square, the leading coefficient, a, must equal 1. If it
does not, then divide the entire equation by a. Then, we can use the
following procedures to solve a quadratic equation by completing
the square.

We will use the example to illustrate each

step.

1. Given a quadratic equation that cannot be factored, and with
, first add or subtract the constant term to the right

sign of the equal sign.

2. Multiply the b term by and square it.

3. Add to both sides of the equal sign and simplify the

right side. We have

4. The left side of the equation can now be factored as a perfect
square.
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5. Use the square root property and solve.

6. The solutions are , .

Example 8: Solving a Quadratic by
Completing the Square

Solve the quadratic equation by completing the
square: .

Solution

First, move the constant term to the right side of the
equal sign.
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Then, take of the b term and square it.

Add the result to both sides of the equal sign.

Factor the left side as a perfect square and simplify
the right side.

Use the square root property and solve.

The solutions are ,

.
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Try It 7

Solve by completing the square: .

Solution
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42. Using the Quadratic
Formula

The fourth method of solving a quadratic equation is by using the
quadratic formula, a formula that will solve all quadratic equations.
Although the quadratic formula works on any quadratic equation in
standard form, it is easy to make errors in substituting the values
into the formula. Pay close attention when substituting, and use
parentheses when inserting a negative number.

We can derive the quadratic formula by completing the square.
We will assume that the leading coefficient is positive; if it is
negative, we can multiply the equation by and obtain a positive
a. Given , , we will complete the

square as follows:

1. First, move the constant term to the right side of the equal
sign:

2. As we want the leading coefficient to equal 1, divide through by
a:

3. Then, find of the middle term, and add

to both sides of the equal sign:

4. Next, write the left side as a perfect square. Find the common
denominator of the right side and write it as a single fraction:
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5. Now, use the square root property, which gives

6. Finally, add to both sides of the equation and combine

the terms on the right side. Thus,

A General Note: The Quadratic
Formula

Written in standard form, ,

any quadratic equation can be solved using the
quadratic formula:

where a, b, and c are real numbers and .
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How To: Given a quadratic equation,
solve it using the quadratic formula

1. Make sure the equation is in standard form:
.

2. Make note of the values of the coefficients and
constant term, , and .

3. Carefully substitute the values noted in step 2
into the equation. To avoid needless errors, use
parentheses around each number input into the
formula.

4. Calculate and solve.

Example 9: Solve the Quadratic
Equation Using the Quadratic Formula

Solve the quadratic equation: .
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Solution

Identify the coefficients: .
Then use the quadratic formula.

Example 10: Solving a Quadratic
Equation with the Quadratic Formula

Use the quadratic formula to solve
.
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Solution

First, we identify the coefficients: ,
and .

Substitute these values into the quadratic formula.

The solutions to the equation are

and or

and .
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Try It 8

Solve the quadratic equation using the quadratic formula:
.

Solution

The Discriminant

The quadratic formula not only generates the solutions to a
quadratic equation, it tells us about the nature of the solutions when
we consider the discriminant, or the expression under the radical,

. The discriminant tells us whether the solutions are real

numbers or complex numbers, and how many solutions of each type
to expect. The table below relates the value of the discriminant to
the solutions of a quadratic equation.

Value of Discriminant Results

One rational solution
(double solution)

0" title="{b}^{2}-4ac>0"
class="latex mathjax">, perfect square

Two rational
solutions

0" title="{b}^{2}-4ac>0"
class="latex mathjax">, not a perfect square

Two irrational
solutions

Two complex
solutions

Using the Quadratic Formula | 249



A General Note: The Discriminant

For , where , , and are

real numbers, the discriminant is the expression under
the radical in the quadratic formula: . It tells

us whether the solutions are real numbers or complex
numbers and how many solutions of each type to
expect.

Example 11: Using the Discriminant to
Find the Nature of the Solutions to a
Quadratic Equation

Use the discriminant to find the nature of the
solutions to the following quadratic equations:

1.

2.

3.

4.
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Solution

Calculate the discriminant for each

equation and state the expected type of solutions.

1.

. There

will be one rational double solution.
2.

.

As is a perfect square, there will be two
rational solutions.

3.

. As is a perfect square, there will be two
rational solutions.

4.

. There will be two complex solutions.

Using the Pythagorean Theorem

One of the most famous formulas in mathematics is the
Pythagorean Theorem. It is based on a right triangle, and states
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the relationship among the lengths of the sides as

, where and refer to the legs of a right triangle adjacent to the
angle, and refers to the hypotenuse. It has immeasurable

uses in architecture, engineering, the sciences, geometry,
trigonometry, and algebra, and in everyday applications.

We use the Pythagorean Theorem to solve for the length of one
side of a triangle when we have the lengths of the other two.
Because each of the terms is squared in the theorem, when we are
solving for a side of a triangle, we have a quadratic equation. We can
use the methods for solving quadratic equations that we learned in
this section to solve for the missing side.

The Pythagorean Theorem is given as

where and refer to the legs of a right triangle adjacent to the
angle, and refers to the hypotenuse, as shown in Figure 4.

Figure 4
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Example 12: Finding the Length of the
Missing Side of a Right Triangle

Find the length of the missing side of the right
triangle in Figure 5.

Figure 5

As we have measurements for side b and the hypotenuse, the
missing side is a.

Using the Quadratic Formula | 253



Try It 9

Use the Pythagorean Theorem to solve the right triangle
problem: Leg a measures 4 units, leg b measures 3 units.
Find the length of the hypotenuse.

Solution
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43. Key Concepts & Glossary

Key Concepts

• Many quadratic equations can be solved by factoring when the
equation has a leading coefficient of 1 or if the equation is a
difference of squares. The zero-factor property is then used to
find solutions.

• Many quadratic equations with a leading coefficient other than
1 can be solved by factoring using the grouping method.

• Another method for solving quadratics is the square root
property. The variable is squared. We isolate the squared term
and take the square root of both sides of the equation. The
solution will yield a positive and negative solution.

• Completing the square is a method of solving quadratic
equations when the equation cannot be factored.

• A highly dependable method for solving quadratic equations is
the quadratic formula, based on the coefficients and the
constant term in the equation.

• The discriminant is used to indicate the nature of the roots
that the quadratic equation will yield: real or complex, rational
or irrational, and how many of each.

• The Pythagorean Theorem, among the most famous theorems
in history, is used to solve right-triangle problems and has
applications in numerous fields. Solving for the length of one
side of a right triangle requires solving a quadratic equation.

Glossary

completing the square a process for solving quadratic equations
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in which terms are added to or subtracted from both sides of the
equation in order to make one side a perfect square

discriminant the expression under the radical in the quadratic
formula that indicates the nature of the solutions, real or complex,
rational or irrational, single or double roots.

Pythagorean Theorem a theorem that states the relationship
among the lengths of the sides of a right triangle, used to solve right
triangle problems

quadratic equation an equation containing a second-degree
polynomial; can be solved using multiple methods

quadratic formula a formula that will solve all quadratic equations
square root property one of the methods used to solve a

quadratic equation, in which the term is isolated so that the

square root of both sides of the equation can be taken to solve for x
zero-product property the property that formally states that

multiplication by zero is zero, so that each factor of a quadratic
equation can be set equal to zero to solve equations
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44. Section Exercises

1. How do we recognize when an equation is quadratic?
2. When we solve a quadratic equation, how many solutions

should we always start out seeking? Explain why when solving a
quadratic equation in the form we may

graph the equation and have no zeroes

(x-intercepts).
3. When we solve a quadratic equation by factoring, why do we

move all terms to one side, having zero on the other side?
4. In the quadratic formula, what is the name of the expression

under the radical sign , and how does it determine the

number of and nature of our solutions?
5. Describe two scenarios where using the square root property

to solve a quadratic equation would be the most efficient method.
For the following exercises, solve the quadratic equation by

factoring.
6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.
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18.

For the following exercises, solve the quadratic equation by using
the square root property.

19.

20.

21.

22.

23.

24.

For the following exercises, solve the quadratic equation by
completing the square. Show each step.

25.

26.

27.

28.

29.

30.

31.

For the following exercises, determine the discriminant, and then
state how many solutions there are and the nature of the solutions.
Do not solve.

32.

33.

34.

35.

36.

37.

For the following exercises, solve the quadratic equation by using
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the quadratic formula. If the solutions are not real, state No Real
Solution.

38.

39.

40.

41.

42.

43.

For the following exercises, enter the expressions into your
graphing utility and find the zeroes to the equation (the
x-intercepts) by using 2nd CALC 2:zero. Recall finding zeroes will ask
left bound (move your cursor to the left of the zero,enter), then right
bound (move your cursor to the right of the zero,enter), then guess
(move your cursor between the bounds near the zero, enter). Round
your answers to the nearest thousandth.

44.

45.

46.

47. To solve the quadratic equation , we

can graph these two equations

and find the points of intersection. Recall 2nd CALC 5:intersection.
Do this and find the solutions to the nearest tenth.

48. To solve the quadratic equation ,

we can graph these two equations
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and find the points of intersection. Recall 2nd CALC 5:intersection.
Do this and find the solutions to the nearest tenth.

49. Beginning with the general form of a quadratic equation,
, solve for x by using the completing the

square method , thus deriving the quadratic formula.
50. Show that the sum of the two solutions to the quadratic

equation is .

51. A person has a garden that has a length 10 feet longer than
the width. Set up a quadratic equation to find the dimensions of the
garden if its area is 119 ft2. Solve the quadratic equation to find the
length and width.

52. Abercrombie and Fitch stock had a price given as
, where is the time in months

from 1999 to 2001. ( is January 1999). Find the two months in
which the price of the stock was $30.

53. Suppose that an equation is given
, where represents the

number of items sold at an auction and is the profit made by
the business that ran the auction. How many items sold would
make this profit a maximum? Solve this by graphing the expression
in your graphing utility and finding the maximum using 2nd CALC
maximum. To obtain a good window for the curve, set [0,200] and

[0,10000].
54. A formula for the normal systolic blood pressure for a man

age , measured in mmHg, is given as
. Find the age to the nearest

year of a man whose normal blood pressure measures 125 mmHg.
55. The cost function for a certain company is

and the revenue is given by
. Recall that profit is revenue minus cost.

Set up a quadratic equation and find two values of x (production
level) that will create a profit of $300.

56. A falling object travels a distance given by the formula
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ft., where is measured in seconds. How long

will it take for the object to traveled 74 ft.?
57. A vacant lot is being converted into a community garden. The

garden and the walkway around its perimeter have an area of 378
ft2. Find the width of the walkway if the garden is 12 ft. wide by 15 ft.
long.

58. An epidemiological study of the spread of a certain influenza
strain that hit a small school population found that the total number
of students, , who contracted the flu days after it broke out
is given by the model , where

. Find the day that 160 students had the flu. Recall that
the restriction on is at most 6.
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PART VII

OTHER TYPES OF
EQUATIONS
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45. Introduction: Other Types
of Equations

Learning Objectives

By the end of this section, you will be able to:

• Solve equations involving rational exponents.
• Solve equations using factoring.
• Solve radical equations.
• Solve absolute value equations.
• Solve other types of equations.

We have solved linear equations, rational equations, and quadratic
equations using several methods. However, there are many other
types of equations, and we will investigate a few more types in
this section. We will look at equations involving rational exponents,
polynomial equations, radical equations, absolute value equations,
equations in quadratic form, and some rational equations that can
be transformed into quadratics. Solving any equation, however,
employs the same basic algebraic rules. We will learn some new
techniques as they apply to certain equations, but the algebra never
changes.
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46. Solving Equations
Involving Rational Exponents

Rational exponents are exponents that are fractions, where the
numerator is a power and the denominator is a root. For example,

is another way of writing ; is another way of writing

. The ability to work with rational exponents is a useful skill, as

it is highly applicable in calculus.
We can solve equations in which a variable is raised to a rational

exponent by raising both sides of the equation to the reciprocal of
the exponent. The reason we raise the equation to the reciprocal of
the exponent is because we want to eliminate the exponent on the
variable term, and a number multiplied by its reciprocal equals 1. For

example, , , and so on.

A General Note: Rational Exponents

A rational exponent indicates a power in the
numerator and a root in the denominator. There are
multiple ways of writing an expression, a variable, or a
number with a rational exponent:
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Example 1: Evaluating a Number Raised
to a Rational Exponent

Evaluate .

Solution

Whether we take the root first or the power first
depends on the number. It is easy to find the cube root

of 8, so rewrite as .
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Try It 1

Evaluate .

Solution

Example 2: Solve the Equation Including
a Variable Raised to a Rational Exponent

Solve the equation in which a variable is raised to a

rational exponent: .

Solution

The way to remove the exponent on x is by raising
both sides of the equation to a power that is the

reciprocal of , which is .
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Try It 2

Solve the equation .

Solution

Example 3: Solving an Equation
Involving Rational Exponents and
Factoring

Solve .
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Solution

This equation involves rational exponents as well as
factoring rational exponents. Let us take this one step at
a time. First, put the variable terms on one side of the
equal sign and set the equation equal to zero.

Now, it looks like we should factor the left side, but
what do we factor out? We can always factor the term

with the lowest exponent. Rewrite as . Then,

factor out from both terms on the left.

Where did come from? Remember, when we

multiply two numbers with the same base, we add the

exponents. Therefore, if we multiply back in using

the distributive property, we get the expression we had
before the factoring, which is what should happen. We
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need an exponent such that when added to equals

. Thus, the exponent on x in the parentheses is .

Let us continue. Now we have two factors and can use
the zero factor theorem.

The two solutions are , .

Try It 3

Solve: .

Solution
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47. Solving Equations Using
Factoring

We have used factoring to solve quadratic equations, but it is a
technique that we can use with many types of polynomial equations,
which are equations that contain a string of terms including
numerical coefficients and variables. When we are faced with an
equation containing polynomials of degree higher than 2, we can
often solve them by factoring.

A General Note: Polynomial Equations

A polynomial of degree n is an expression of the type

where n is a positive integer and are
real numbers and .

Setting the polynomial equal to zero gives a
polynomial equation. The total number of solutions
(real and complex) to a polynomial equation is equal to
the highest exponent n.
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Example 4: Solving a Polynomial by
Factoring

Solve the polynomial by factoring: .

Solution

First, set the equation equal to zero. Then factor out
what is common to both terms, the GCF.

Notice that we have the difference of squares in the
factor , which we will continue to factor and

obtain two solutions. The first term, , generates,

technically, two solutions as the exponent is 2, but they
are the same solution.
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The solutions are

, and .

Analysis of the Solution

We can see the solutions on the graph in Figure 1. The x-coordinates
of the points where the graph crosses the x-axis are the
solutions–the x-intercepts. Notice on the graph that at the solution

, the graph touches the x-axis and bounces back. It does not
cross the x-axis. This is typical of double solutions.
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Figure 1

Try It 4

Solve by factoring: .

Solution
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Example 5: Solve a Polynomial by
Grouping

Solve a polynomial by grouping:
.

Solution

This polynomial consists of 4 terms, which we can
solve by grouping. Grouping procedures require
factoring the first two terms and then factoring the last
two terms. If the factors in the parentheses are
identical, we can continue the process and solve, unless
more factoring is suggested.

The grouping process ends here, as we can factor
using the difference of squares formula.
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The solutions are , , and .
Note that the highest exponent is 3 and we obtained 3
solutions. We can see the solutions, the x-intercepts, on
the graph in Figure 2.

Figure 2
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Analysis of the Solution

We looked at solving quadratic equations by factoring when the
leading coefficient is 1. When the leading coefficient is not 1, we
solved by grouping. Grouping requires four terms, which we
obtained by splitting the linear term of quadratic equations. We can
also use grouping for some polynomials of degree higher than 2, as
we saw here, since there were already four terms.
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48. Solving Radical Equations

Radical equations are equations that contain variables in the
radicand (the expression under a radical symbol), such as

Radical equations may have one or more radical terms, and are
solved by eliminating each radical, one at a time. We have to be
careful when solving radical equations, as it is not unusual to find
extraneous solutions, roots that are not, in fact, solutions to the
equation. These solutions are not due to a mistake in the solving
method, but result from the process of raising both sides of an
equation to a power. However, checking each answer in the original
equation will confirm the true solutions.

A General Note: Radical Equations

An equation containing terms with a variable in the
radicand is called a radical equation.
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How To: Given a radical equation, solve
it.

1. Isolate the radical expression on one side of the
equal sign. Put all remaining terms on the other
side.

2. If the radical is a square root, then square both
sides of the equation. If it is a cube root, then raise
both sides of the equation to the third power. In
other words, for an nth root radical, raise both
sides to the nth power. Doing so eliminates the
radical symbol.

3. Solve the remaining equation.
4. If a radical term still remains, repeat steps 1–2.
5. Confirm solutions by substituting them into the

original equation.

Example 6: Solving an Equation with
One Radical

Solve .
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Solution

The radical is already isolated on the left side of the
equal side, so proceed to square both sides.

We see that the remaining equation is a quadratic. Set
it equal to zero and solve.

The proposed solutions are and .
Let us check each solution back in the original equation.
First, check .

This is an extraneous solution. While no mistake was
made solving the equation, we found a solution that
does not satisfy the original equation.
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Check .

The solution is .

Try It 5

Solve the radical equation:

Solution

Example 7: Solving a Radical Equation
Containing Two Radicals

Solve .
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Solution

As this equation contains two radicals, we isolate one
radical, eliminate it, and then isolate the second radical.

Use the perfect square formula to expand the right

side: .

Now that both radicals have been eliminated, set the
quadratic equal to zero and solve.

The proposed solutions are and .
Check each solution in the original equation.
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One solution is .

Check .

The only solution is . We see that is
an extraneous solution.

Try It 6

Solve the equation with two radicals:
.

Solution
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49. Solving an Absolute Value
Equation

Next, we will learn how to solve an absolute value equation. To solve
an equation such as , we notice that the absolute

value will be equal to 8 if the quantity inside the absolute value
bars is or . This leads to two different equations we can solve
independently.

Knowing how to solve problems involving absolute value functions
is useful. For example, we may need to identify numbers or points
on a line that are at a specified distance from a given reference
point.

A General Note: Absolute Value
Equations

The absolute value of x is written as . It has the

following properties:
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For real numbers and , an equation of the form
, with , will have solutions when

or . If , the equation
has no solution.

An absolute value equation in the form
has the following properties:

0,|ax+b|=c\text{ has two solutions}.\hfill \end{array}"
title="\begin{array}{l}\text{If }c<0,|ax+b|=c\text{ has no
solution}.\hfill \\ \text{If }c=0,|ax+b|=c\text{ has one
solution}.\hfill \\ \text{If }c>0,|ax+b|=c\text{ has two

solutions}.\hfill \end{array}" class="latex mathjax">

How To: Given an absolute value
equation, solve it.

1. Isolate the absolute value expression on one
side of the equal sign.

2. If 0" title="c>0" class="latex mathjax">,
write and solve two equations: and
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.

Example 8: Solving Absolute Value
Equations

Solve the following absolute value equations:

a.

b.

c.

d.

Solution

a.

Write two equations and solve each:
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The two solutions are , .

b.

There is no solution as an absolute value cannot be
negative.

c.

Isolate the absolute value expression and then write
two equations.

There are two solutions: , .

d.

The equation is set equal to zero, so we have to write
only one equation.
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There is one solution: .

Try It 7

Solve the absolute value equation:
.

Solution

Solving an Absolute Value Equation | 289



50. Solving Other Types of
Equations

There are many other types of equations in addition to the ones
we have discussed so far. We will see more of them throughout the
text. Here, we will discuss equations that are in quadratic form, and
rational equations that result in a quadratic.

Solving Equations in Quadratic Form

Equations in quadratic form are equations with three terms. The
first term has a power other than 2. The middle term has an
exponent that is one-half the exponent of the leading term. The
third term is a constant. We can solve equations in this form as
if they were quadratic. A few examples of these equations include

, and

. In each one, doubling the exponent of

the middle term equals the exponent on the leading term. We can
solve these equations by substituting a variable for the middle term.

A General Note: Quadratic Form

If the exponent on the middle term is one-half of the
exponent on the leading term, we have an equation in
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quadratic form, which we can solve as if it were a
quadratic. We substitute a variable for the middle term
to solve equations in quadratic form.

How To: Given an equation quadratic in
form, solve it.

1. Identify the exponent on the leading term and
determine whether it is double the exponent on
the middle term.

2. If it is, substitute a variable, such as u, for the
variable portion of the middle term.

3. Rewrite the equation so that it takes on the
standard form of a quadratic.

4. Solve using one of the usual methods for solving
a quadratic.

5. Replace the substitution variable with the
original term.

6. Solve the remaining equation.
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Example 9: Solving a Fourth-Degree
Equation in Quadratic Form

Solve this fourth-degree equation:
.

Solution

This equation fits the main criteria, that the power on
the leading term is double the power on the middle
term. Next, we will make a substitution for the variable
term in the middle. Let . Rewrite the equation

in u.

Now solve the quadratic.

Solve each factor and replace the original term for u.
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The solutions are and .

Try It 8

Solve using substitution: .

Solution
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Example 10: Solving an Equation in
Quadratic Form Containing a Binomial

Solve the equation in quadratic form:

.

Solution

This equation contains a binomial in place of the
single variable. The tendency is to expand what is
presented. However, recognizing that it fits the criteria
for being in quadratic form makes all the difference in
the solving process. First, make a substitution, letting

. Then rewrite the equation in u.

Solve using the zero-factor property and then replace
u with the original expression.
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The second factor results in

We have two solutions: , .

Try It 9

Solve: .

Solution

Solving Rational Equations Resulting in a
Quadratic

Earlier, we solved rational equations. Sometimes, solving a rational
equation results in a quadratic. When this happens, we continue
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the solution by simplifying the quadratic equation by one of the
methods we have seen. It may turn out that there is no solution.

Example 11: Solving a Rational Equation
Leading to a Quadratic

Solve the following rational equation:

.

Solution

We want all denominators in factored form to find the
LCD. Two of the denominators cannot be factored
further. However, .

Then, the LCD is . Next, we

multiply the whole equation by the LCD.
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In this case, either solution produces a zero in the
denominator in the original equation. Thus, there is no
solution.

Try It 10

Solve .

Solution
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51. Key Concepts & Glossary

Key Concepts

• Rational exponents can be rewritten several ways depending
on what is most convenient for the problem. To solve, both
sides of the equation are raised to a power that will render the
exponent on the variable equal to 1.

• Factoring extends to higher-order polynomials when it
involves factoring out the GCF or factoring by grouping.

• We can solve radical equations by isolating the radical and
raising both sides of the equation to a power that matches the
index.

• To solve absolute value equations, we need to write two
equations, one for the positive value and one for the negative
value.

• Equations in quadratic form are easy to spot, as the exponent
on the first term is double the exponent on the second term
and the third term is a constant. We may also see a binomial in
place of the single variable. We use substitution to solve.

• Solving a rational equation may also lead to a quadratic
equation or an equation in quadratic form.

Glossary

absolute value equation an equation in which the variable appears
in absolute value bars, typically with two solutions, one accounting
for the positive expression and one for the negative expression

equations in quadratic form equations with a power other than
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2 but with a middle term with an exponent that is one-half the
exponent of the leading term

extraneous solutions any solutions obtained that are not valid in
the original equation

polynomial equation an equation containing a string of terms
including numerical coefficients and variables raised to whole-
number exponents

radical equation an equation containing at least one radical term
where the variable is part of the radicand

Key Concepts & Glossary | 299



52. Section Exercises

1. In a radical equation, what does it mean if a number is an
extraneous solution?

2. Explain why possible solutions must be checked in radical
equations.

3. Your friend tries to calculate the value and keeps getting

an ERROR message. What mistake is he or she probably making?
4. Explain why has no solutions.

5. Explain how to change a rational exponent into the correct
radical expression.

For the following exercises, solve the rational exponent equation.
Use factoring where necessary.

6.

7.

8.

9.

10.

11.

12.

For the following exercises, solve the following polynomial
equations by grouping and factoring.

13.

14.

15.

16.

17.
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18.

19.

For the following exercises, solve the radical equation. Be sure to
check all solutions to eliminate extraneous solutions.

20.

21.

22.

23.

24.

25.

26.

27.

28.

For the following exercises, solve the equation involving absolute
value.

29.

30.

31.

32.

33.

34.

35.

36.

For the following exercises, solve the equation by identifying the
quadratic form. Use a substitute variable and find all real solutions
by factoring.

37.

38.

39.
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40.

41.

For the following exercises, solve for the unknown variable.
42.

43.

44.

45.

For the following exercises, use the model for the period of a

pendulum, , such that , where the length of the

pendulum is L and the acceleration due to gravity is .
46. If the acceleration due to gravity is and the period

equals 1 s, find the length to the nearest cm (100 cm = 1 m).

47. If the gravity is and the period equals 1 s, find the

length to the nearest in. (12 in. = 1 ft). Round your answer to the
nearest in.

For the following exercises, use a model for body surface area,

BSA, such that , where w = weight in kg and h

= height in cm.
48. Find the height of a 72-kg female to the nearest cm whose

.
49. Find the weight of a 177-cm male to the nearest kg whose

.
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PART VIII

LINEAR INEQUALITIES
AND ABSOLUTE VALUE
INEQUALITIES
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53. Introduction: Linear
Inequalities and Absolute
Value Inequalities

Learning Objectives

By the end of this section, you will be able to:

• Use interval notation.
• Use properties of inequalities.
• Solve inequalities in one variable algebraically.
• Solve absolute value inequalities.

Figure 1
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It is not easy to make the honor role at most top universities.
Suppose students were required to carry a course load of at least
12 credit hours and maintain a grade point average of 3.5 or above.
How could these honor roll requirements be expressed
mathematically? In this section, we will explore various ways to
express different sets of numbers, inequalities, and absolute value
inequalities.
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54. Using Interval Notation

Indicating the solution to an inequality such as can be
achieved in several ways.

We can use a number line as shown in Figure 2. The blue ray
begins at and, as indicated by the arrowhead, continues
to infinity, which illustrates that the solution set includes all real
numbers greater than or equal to 4.

Figure 2

We can use set-builder notation: , which translates to

“all real numbers x such that x is greater than or equal to 4.” Notice
that braces are used to indicate a set.

The third method is interval notation, in which solution sets are
indicated with parentheses or brackets. The solutions to
are represented as . This is perhaps the most useful

method, as it applies to concepts studied later in this course and to
other higher-level math courses.

The main concept to remember is that parentheses represent
solutions greater or less than the number, and brackets represent
solutions that are greater than or equal to or less than or equal
to the number. Use parentheses to represent infinity or negative
infinity, since positive and negative infinity are not numbers in the
usual sense of the word and, therefore, cannot be “equaled.” A few
examples of an interval, or a set of numbers in which a solution falls,
are , or all numbers between and , including ,

but not including ; , all real numbers between, but not
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including and ; and , all real numbers less than and

including . The table below outlines the possibilities.

Set Indicated Set-Builder
Notation

Interval
Notation

All real numbers between a and b, but not
including a or b image

All real numbers greater than a, but not including a

a\}" title="\{x|x>a\}" class="latex mathjax">

All real numbers less than b, but not including b

All real numbers greater than a, including a

All real numbers less than b, including b

All real numbers between a and b,

including a All real numbers between a

and b, including b All real numbers

between a and b, including a and b All

real numbers less than a or greater than b

b\}" title="\{x|xb\}" class="latex
mathjax"> All real numbers
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Example 1: Using Interval Notation to
Express All Real Numbers Greater Than
or Equal to a

Use interval notation to indicate all real numbers
greater than or equal to .

Solution

Use a bracket on the left of and parentheses after
infinity: . The bracket indicates that is

included in the set with all real numbers greater than
to infinity.

Try It 1

Use interval notation to indicate all real numbers
between and including and .
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Solution

Example 2: Using Interval Notation to
Express All Real Numbers Less Than or
Equal to a or Greater Than or Equal to b

Write the interval expressing all real numbers less
than or equal to or greater than or equal to .

Solution

We have to write two intervals for this example. The
first interval must indicate all real numbers less than or
equal to 1. So, this interval begins at and ends at

, which is written as .

The second interval must show all real numbers
greater than or equal to , which is written as .

However, we want to combine these two sets. We
accomplish this by inserting the union symbol, ,
between the two intervals.
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Try It 2

Express all real numbers less than or greater than or
equal to 3 in interval notation.

Solution
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55. Using the Properties of
Inequalities

When we work with inequalities, we can usually treat them similarly
to but not exactly as we treat equalities. We can use the addition
property and the multiplication property to help us solve them.
The one exception is when we multiply or divide by a negative
number; doing so reverses the inequality symbol.

A General Note: Properties of
Inequalities

0,\text{ then }ac< bc.\hfill \\ \hfill & \text{If }a< b\
text{ and }c< 0,\text{ then }ac> bc.\hfill \end{array}"
title="\begin{array}{ll}\text{Addition Property}\hfill&
\text{If }a< b,\text{ then }a+c< b+c.\hfill \\ \hfill &

\hfill \\ \text{Multiplication Property}\hfill & \text{If
}a< b\text{ and }c> 0,\text{ then }ac< bc.\hfill \\ \hfill
& \text{If }a< b\text{ and }c< 0,\text{ then }ac> bc.\hfill

\end{array}" class="latex mathjax">

These properties also apply to , b"
title="a>b" class="latex mathjax">, and .
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Example 3: Demonstrating the Addition
Property

Illustrate the addition property for inequalities by
solving each of the following:

a.
b.

c. 9" title="x+7>9" class="latex
mathjax">

Solution

The addition property for inequalities states that if an
inequality exists, adding or subtracting the same
number on both sides does not change the inequality.

a.
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b.

c.

9\hfill & \hfill \\ x+7 - 7>9 - 7\hfill & \text{Subtract 7
from both sides}.\hfill \\ x>2\hfill & \hfill \end{array}"
title="\begin{array}{ll}x+7>9\hfill & \hfill \\ x+7 - 7>9 -
7\hfill & \text{Subtract 7 from both sides}.\hfill \\
x>2\hfill & \hfill \end{array}" class="latex mathjax">

Try It 3

Solve .

Solution
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Example 4: Demonstrating the
Multiplication Property

Illustrate the multiplication property for inequalities
by solving each of the following:

1.
2.

3. 10" title="5-x>10" class="latex
mathjax">

Solution

a.

b.
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c.

10\hfill & \hfill \\ -x>5\hfill & \hfill \\ \left(-1\
right)\left(-x\right)>\left(5\right)\left(-1\right)\hfill &
\text{Multiply by }-1.\hfill \\ x<-5\hfill &
\text{Reverse the inequality}.\hfill \end{array}"
title="\begin{array}{ll}5-x>10\hfill & \hfill \\ -x>5\hfill
& \hfill \\ \left(-1\right)\left(-x\right)>\left(5\
right)\left(-1\right)\hfill & \text{Multiply by }-1.\hfill
\\ x<-5\hfill & \text{Reverse the inequality}.\hfill
\end{array}" class="latex mathjax">

Try It 4

Solve .

Solution
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Solving Inequalities in One Variable
Algebraically

As the examples have shown, we can perform the same operations
on both sides of an inequality, just as we do with equations; we
combine like terms and perform operations. To solve, we isolate the
variable.

Example 5: Solving an Inequality
Algebraically

Solve the inequality: .

Solution

Solving this inequality is similar to solving an equation
up until the last step.
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The solution set is given by the interval , or

all real numbers less than and including 1.

Try It 5

Solve the inequality and write the answer using interval

notation: .

Solution

Example 6: Solving an Inequality with
Fractions

Solve the following inequality and write the answer in

interval notation: .
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Solution

We begin solving in the same way we do when solving
an equation.

The solution set is the interval .

Try It 6

Solve the inequality and write the answer in interval

notation: .

Solution
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56. Understanding
Compound Inequalities

A compound inequality includes two inequalities in one statement.
A statement such as means and
. There are two ways to solve compound inequalities: separating
them into two separate inequalities or leaving the compound
inequality intact and performing operations on all three parts at the
same time. We will illustrate both methods.

Example 7: Solving a Compound
Inequality

Solve the compound inequality: .

Solution

The first method is to write two separate inequalities:
and . We solve them

independently.
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Then, we can rewrite the solution as a compound
inequality, the same way the problem began.

In interval notation, the solution is written as

.

The second method is to leave the compound
inequality intact, and perform solving procedures on the
three parts at the same time.

We get the same solution: .

Try It 7

Solve the compound inequality .

Solution
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Example 8: Solving a Compound
Inequality with the Variable in All Three
Parts

Solve the compound inequality with variables in all

three parts: 7x -
2>5x - 10" title="3+x>7x - 2>5x - 10" class="latex
mathjax">.

Solution

Lets try the first method. Write two inequalities:

7x - 2\hfill & \text{and}\hfill & 7x - 2> 5x - 10\hfill \\
3> 6x - 2\hfill & \hfill & 2x - 2> -10\hfill \\ 5> 6x\hfill
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& \hfill & 2x> -8\hfill \\ \frac{5}{6}> x\hfill & \hfill &
x> -4\hfill \\ x< \frac{5}{6}\hfill & \hfill & -4< x\hfill
\end{array}" title="\begin{array}{lll}3+x> 7x - 2\hfill &

\text{and}\hfill & 7x - 2> 5x - 10\hfill \\ 3> 6x - 2\hfill
& \hfill & 2x - 2> -10\hfill \\ 5> 6x\hfill & \hfill & 2x>
-8\hfill \\ \frac{5}{6}> x\hfill & \hfill & x> -4\hfill \\

x< \frac{5}{6}\hfill & \hfill & -4< x\hfill \end{array}"
class="latex mathjax">

The solution set is or in interval

notation . Notice that when we write the

solution in interval notation, the smaller number comes
first. We read intervals from left to right, as they appear
on a number line.

Figure 3

Try It 8

Solve the compound inequality:
.
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Solution
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57. Solving Absolute Value
Inequalities

As we know, the absolute value of a quantity is a positive number or
zero. From the origin, a point located at has an absolute

value of , as it is x units away. Consider absolute value as the
distance from one point to another point. Regardless of direction,
positive or negative, the distance between the two points is
represented as a positive number or zero.

An absolute value inequality is an equation of the form

B,\text{or
}|A|\ge B" title="|A|B,\text{or }|A|\ge B" class="latex mathjax">,

Where A, and sometimes B, represents an algebraic expression
dependent on a variable x. Solving the inequality means finding the
set of all –values that satisfy the problem. Usually this set will be
an interval or the union of two intervals and will include a range of
values.

There are two basic approaches to solving absolute value
inequalities: graphical and algebraic. The advantage of the graphical
approach is we can read the solution by interpreting the graphs
of two equations. The advantage of the algebraic approach is that
solutions are exact, as precise solutions are sometimes difficult to
read from a graph.

Suppose we want to know all possible returns on an investment
if we could earn some amount of money within $200 of $600. We
can solve algebraically for the set of x-values such that the distance
between and 600 is less than 200. We represent the distance
between and 600 as , and therefore,

or
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This means our returns would be between $400 and $800.
To solve absolute value inequalities, just as with absolute value

equations, we write two inequalities and then solve them
independently.

A General Note: Absolute Value
Inequalities

For an algebraic expression X, and 0"
title="k>0" class="latex mathjax">, an absolute value
inequality is an inequality of the form

k\text{ is equivalent to }X< -k\text{ or }X> k\\hfill
\end{array}" title="\begin{array}{l}|X|< k\text{ is
equivalent to }-k< X< k\\hfill \\ |X|> k\text{ is

equivalent to }X< -k\text{ or }X> k\\hfill \end{array}"
class="latex mathjax">

These statements also apply to and

.

326 | Solving Absolute Value Inequalities



Example 9: Determining a Number
within a Prescribed Distance

Describe all values within a distance of 4 from the
number 5.

Solution

We want the distance between and 5 to be less than
or equal to 4. We can draw a number line, such as in
Figure 4, to represent the condition to be satisfied.

Figure 4

The distance from to 5 can be represented using an
absolute value symbol, . Write the values of

that satisfy the condition as an absolute value inequality.
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We need to write two inequalities as there are always
two solutions to an absolute value equation.

If the solution set is and , then the
solution set is an interval including all real numbers
between and including 1 and 9.

So is equivalent to in interval

notation.

Try It 9

Describe all x-values within a distance of 3 from the
number 2.

Solution
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Example 10: Solving an Absolute Value
Inequality

Solve .

Solution
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Example 11: Using a Graphical Approach
to Solve Absolute Value Inequalities

Given the equation ,

determine the x-values for which the y-values are
negative.

Solution

We are trying to determine where , which is

when . We begin by

isolating the absolute value.

6\hfill & \hfill \end{array}" title="\begin{array}{ll}-
\frac{1}{2}|4x - 5|< -3\hfill & \text{Multiply both sides
by -2, and reverse the inequality}.\hfill \\ |4x - 5|> 6\

hfill & \hfill \end{array}" class="latex mathjax">
Next, we solve for the equality .
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Now, we can examine the graph to observe where the
y-values are negative. We observe where the branches
are below the x-axis. Notice that it is not important
exactly what the graph looks like, as long as we know

that it crosses the horizontal axis at and

, and that the graph opens downward.

Figure 5
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Try It 10

Solve .

Solution
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58. Key Concepts & Glossary

Key Concepts

• Interval notation is a method to indicate the solution set to an
inequality. Highly applicable in calculus, it is a system of
parentheses and brackets that indicate what numbers are
included in a set and whether the endpoints are included as
well.

• Solving inequalities is similar to solving equations. The same
algebraic rules apply, except for one: multiplying or dividing by
a negative number reverses the inequality.

• Compound inequalities often have three parts and can be
rewritten as two independent inequalities. Solutions are given
by boundary values, which are indicated as a beginning
boundary or an ending boundary in the solutions to the two
inequalities.

• Absolute value inequalities will produce two solution sets due
to the nature of absolute value. We solve by writing two
equations: one equal to a positive value and one equal to a
negative value.

• Absolute value inequalities can also be solved by graphing. At
least we can check the algebraic solutions by graphing, as we
cannot depend on a visual for a precise solution.

Glossary

compound inequality a problem or a statement that includes two
inequalities
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interval an interval describes a set of numbers within which a
solution falls

interval notation a mathematical statement that describes a
solution set and uses parentheses or brackets to indicate where an
interval begins and ends

linear inequality similar to a linear equation except that the
solutions will include sets of numbers

334 | Key Concepts & Glossary



59. Section Exercises

1. When solving an inequality, explain what happened from Step 1 to
Step 2:

2. When solving an inequality, we arrive at

Explain what our solution set is.
3. When writing our solution in interval notation, how do we

represent all the real numbers?
4. When solving an inequality, we arrive at

Explain what our solution set is.
5. Describe how to graph

For the following exercises, solve the inequality. Write your final
answer in interval notation.

6.
7.
8.
9.

10.

11.

12.

Section Exercises | 335



13.

14.

For the following exercises, solve the inequality involving absolute
value. Write your final answer in interval notation.

15.

16.

17.

18.

19.

20.

21.

22.

23.

For the following exercises, describe all the x-values within or
including a distance of the given values.

24. Distance of 5 units from the number 7
25. Distance of 3 units from the number 9
26. Distance of 10 units from the number 4
27. Distance of 11 units from the number 1
For the following exercises, solve the compound inequality.

Express your answer using inequality signs, and then write your
answer using interval notation.

28.
29.
30.
31.
32.
For the following exercises, graph the function. Observe the

points of intersection and shade the x-axis representing the
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solution set to the inequality. Show your graph and write your final
answer in interval notation.

33.

34.

35.

36.

37.

For the following exercises, graph both straight lines (left-hand
side being y1 and right-hand side being y2) on the same axes. Find
the point of intersection and solve the inequality by observing
where it is true comparing the y-values of the lines.

38.
39.
40.

41.

42.

For the following exercises, write the set in interval notation.
43.

44.

45.

46.

For the following exercises, write the interval in set-builder
notation.

47.

48.

49.

50.

For the following exercises, write the set of numbers represented
on the number line in interval notation.
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51.

52.

53.

For the following exercises, input the left-hand side of the
inequality as a Y1 graph in your graphing utility. Enter y2 = the right-
hand side. Entering the absolute value of an expression is found
in the MATH menu, Num, 1:abs(. Find the points of intersection,
recall (2nd CALC 5:intersection, 1st curve, enter, 2nd curve, enter,
guess, enter). Copy a sketch of the graph and shade the x-axis for
your solution set to the inequality. Write final answers in interval
notation.

54.

55.

56.

57.

58.

59. Solve

60. Solve

61. ,

62. is a profit formula for a

small business. Find the set of x-values that will keep this profit
positive.

63. In chemistry the volume for a certain gas is given by
, where V is measured in cc and T is temperature in ºC.
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If the temperature varies between 80ºC and 120ºC, find the set of
volume values.

64. A basic cellular package costs $20/mo. for 60 min of calling,
with an additional charge of $.30/min beyond that time. The cost
formula would be . If you have to

keep your bill lower than $50, what is the maximum calling minutes
you can use?
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PART IX

FUNCTIONS AND
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60. Introduction to Functions
and Function Notation

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Determine whether a relation represents a
function.

• Find the value of a function.
• Determine whether a function is one-to-one.
• Use the vertical line test to identify functions.
• Graph the functions listed in the library of

functions.

A jetliner changes altitude as its distance from the starting point
of a flight increases. The weight of a growing child increases with
time. In each case, one quantity depends on another. There is a
relationship between the two quantities that we can describe,
analyze, and use to make predictions. In this section, we will analyze
such relationships.
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61. Determine whether a
relation represents a function

A relation is a set of ordered pairs. The set of the first components
of each ordered pair is called the domain and the set of the second
components of each ordered pair is called the range. Consider the
following set of ordered pairs. The first numbers in each pair are the
first five natural numbers. The second number in each pair is twice
that of the first.

The domain is . The range is .

Note that each value in the domain is also known as an input
value, or independent variable, and is often labeled with the
lowercase letter . Each value in the range is also known as an
output value, or dependent variable, and is often labeled lowercase
letter .

A function is a relation that assigns a single value in the range to

each value in the domain. In other words, no x-values are repeated.
For our example that relates the first five natural numbers to
numbers double their values, this relation is a function because each
element in the domain, , is paired with exactly one

element in the range, .

Now let’s consider the set of ordered pairs that relates the terms
“even” and “odd” to the first five natural numbers. It would appear
as

Notice that each element in the domain, is not

paired with exactly one element in the range,

. For example, the term “odd” corresponds to three values from the
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domain, and the term “even” corresponds to two values

from the range, . This violates the definition of a function,

so this relation is not a function.
Figure 1 compares relations that are functions and not functions.

Figure 1. (a) This relationship is a function because each input is associated
with a single output. Note that input [latex]q[/latex] and [latex]r[/latex] both
give output [latex]n[/latex]. (b) This relationship is also a function. In this
case, each input is associated with a single output. (c) This relationship is not
a function because input [latex]q[/latex] is associated with two different
outputs.

A General Note: Function

A function is a relation in which each possible input
value leads to exactly one output value. We say “the
output is a function of the input.”

The input values make up the domain, and the output
values make up the range.
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How To: Given a relationship between
two quantities, determine whether the
relationship is a function.

1. Identify the input values.
2. Identify the output values.
3. If each input value leads to only one output

value, classify the relationship as a function. If any
input value leads to two or more outputs, do not
classify the relationship as a function.

Example 1: Determining If Menu Price
Lists Are Functions

The coffee shop menu, shown in Figure 2 consists of
items and their prices.

1. Is price a function of the item?
2. Is the item a function of the price?
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Figure 2

Solution

1. Let’s begin by considering the input as the items
on the menu. The output values are then the
prices. See Figure 2.
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Figure 2

Each item on the menu has only one price, so
the price is a function of the item.

2. Two items on the menu have the same price. If
we consider the prices to be the input values and
the items to be the output, then the same input
value could have more than one output associated
with it. See Figure 3.

Figure 3

Therefore, the item is a not a function of price.
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Example 2: Determining If Class Grade
Rules Are Functions

In a particular math class, the overall percent grade
corresponds to a grade point average. Is grade point
average a function of the percent grade? Is the percent
grade a function of the grade point average? The table
below shows a possible rule for assigning grade points.

Perc
ent
Grade

0–
56

57
–61

62–
66

67
–71

72
–77

78–
86

87
–91

92–1
00

Grad
e Point
Average

0.
0 1.0 1.5 2.

0
2.

5 3.0 3.5 4.0

Solution

For any percent grade earned, there is an associated
grade point average, so the grade point average is a
function of the percent grade. In other words, if we
input the percent grade, the output is a specific grade
point average.

Determine whether a relation represents a function | 349



In the grading system given, there is a range of
percent grades that correspond to the same grade point
average. For example, students who receive a grade
point average of 3.0 could have a variety of percent
grades ranging from 78 all the way to 86. Thus, percent
grade is not a function of grade point average.

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=95
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Try It 1

The table below lists the five greatest baseball players of
all time in order of rank.

Player Rank

Babe Ruth 1

Willie Mays 2

Ty Cobb 3

Walter Johnson 4

Hank Aaron 5

a) Is the rank a function of the player name?
b) Is the player name a function of the rank?
Solution

Using Function Notation

Once we determine that a relationship is a function, we need to
display and define the functional relationships so that we can
understand and use them, and sometimes also so that we can
program them into computers. There are various ways of
representing functions. A standard function notation is one
representation that facilitates working with functions.

To represent “height is a function of age,” we start by identifying
the descriptive variables for height and for age. The letters

, and are often used to represent functions just as we use
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, and to represent numbers and , and to represent
sets.

Remember, we can use any letter to name the function; the notation
shows us that depends on . The value must be put into

the function to get a result. The parentheses indicate that age is
input into the function; they do not indicate multiplication.

We can also give an algebraic expression as the input to a
function. For example means “first add a and b, and

the result is the input for the function f.” The operations must be
performed in this order to obtain the correct result.

A General Note: Function Notation

The notation defines a function named

. This is read as is a function of The letter
represents the input value, or independent variable. The
letter or , represents

the output value, or dependent variable.
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Example 3: Using Function Notation for
Days in a Month

Use function notation to represent a function whose
input is the name of a month and output is the number
of days in that month.

Solution

The number of days in a month is a function of the
name of the month, so if we name the function , we

write or . The

name of the month is the input to a “rule” that
associates a specific number (the output) with each
input.
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Figure 4

For example, , because March

has 31 days. The notation reminds us that

the number of days, (the output), is dependent on the
name of the month, (the input).

Analysis of the Solution

Note that the inputs to a function do not have to be numbers;
function inputs can be names of people, labels of geometric objects,
or any other element that determines some kind of output.
However, most of the functions we will work with in this book will
have numbers as inputs and outputs.

Example 4: Interpreting Function
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Notation

A function gives the number of police

officers, , in a town in year . What does
represent?

Solution

When we read , we see that the

input year is 2005. The value for the output, the number
of police officers , is 300. Remember,

. The statement tells

us that in the year 2005 there were 300 police officers
in the town.
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Q & A

Instead of a notation such as , could we

use the same symbol for the output as for the function,
such as , meaning “y is a function of x?”

Yes, this is often done, especially in applied subjects that
use higher math, such as physics and engineering.
However, in exploring math itself we like to maintain a
distinction between a function such as , which is a rule

or procedure, and the output we get by applying to a

particular input . This is why we usually use notation
such as , and so on.

Representing Functions Using Tables

A common method of representing functions is in the form of a
table. The table rows or columns display the corresponding input
and output values. In some cases, these values represent all we
know about the relationship; other times, the table provides a few
select examples from a more complete relationship.

The table below lists the input number of each month (January =
1, February = 2, and so on) and the output value of the number of
days in that month. This information represents all we know about
the months and days for a given year (that is not a leap year). Note
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that, in this table, we define a days-in-a-month function where

identifies months by an integer rather than by name.

Month number,
(input) 1 2 3 4 5 6 7 8 9 10 11 12

Days in month,
(output)

31 28 31 30 31 30 31 31 30 31 30 31

The table below defines a function . Remember, this

notation tells us that is the name of the function that takes the
input and gives the output

1 2 3 4 5

8 6 7 6 8

The table below displays the age of children in years and their
corresponding heights. This table displays just some of the data
available for the heights and ages of children. We can see right away
that this table does not represent a function because the same input
value, 5 years, has two different output values, 40 in. and 42 in.

Age in years, (input) 5 5 6 7 8 9 10

Height in inches, (output) 40 42 44 47 50 52 54

How To: Given a table of input and
output values, determine whether the
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table represents a function.

1. Identify the input and output values.
2. Check to see if each input value is paired with

only one output value. If so, the table represents a
function.

Example 5: Identifying Tables that
Represent Functions

Which table, a), b), or c), represents a function (if any)?

a)

Table A

Input Output

2 1

5 3

8 6

b)
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Table B

Input Output

–3 5

0 1

4 5

c)

Table C

Input Output

1 0

5 2

5 4

Solution

a) and b) define functions. In both, each input value
corresponds to exactly one output value. c) does not
define a function because the input value of 5
corresponds to two different output values.

When a table represents a function, corresponding
input and output values can also be specified using
function notation.
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The function represented by a) can be represented by
writing

Similarly, the statements

represent the function in b).

c) cannot be expressed in a similar way because it
does not represent a function.
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62. Find the input and output
values of a function

When we know an input value and want to determine the
corresponding output value for a function, we evaluate the function.
Evaluating will always produce one result because each input value
of a function corresponds to exactly one output value.

When we know an output value and want to determine the input
values that would produce that output value, we set the output
equal to the function’s formula and solve for the input. Solving can
produce more than one solution because different input values can
produce the same output value.

Evaluation of Functions in Algebraic Forms

When we have a function in formula form, it is usually a simple
matter to evaluate the function. For example, the function

can be evaluated by squaring the input value,

multiplying by 3, and then subtracting the product from 5.

How To: Given the formula for a
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function, evaluate.

1. Replace the input variable in the formula with
the value provided.

2. Calculate the result.

Example 6: Evaluating Functions

Given the function , evaluate

.

Solution

To evaluate , we substitute the value 4 for the

input variable in the given function.
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Therefore, for an input of 4, we have an output of 24.

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=96
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Example 7: Evaluating Functions at
Specific Values

Evaluate at

1.
2.
3.

4.

Solution

Replace the in the function with each specified
value.

1. Because the input value is a number, 2, we can
use algebra to simplify.

364 | Find the input and output values of a function



2. In this case, the input value is a letter so we
cannot simplify the answer any further.

3. With an input value of , we must use the
distributive property.

4. In this case, we apply the input values to the
function more than once, and then perform
algebraic operations on the result. We already
found that

and we know that

Now we combine the results and simplify.
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Try It 2

Given the function , evaluate

.

Solution

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=96
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Example 8: Solving Functions

Given the function , solve for

.

Solution

If , either

or (or both of them equal 0). We will set

each factor equal to 0 and solve for in each case.

This gives us two solutions. The output

when the input is either or .

Find the input and output values of a function | 367



Figure 5

We can also verify by graphing as in Figure 5. The
graph verifies that and

.
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A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=96

Try It 3

Given the function , solve

.

Solution
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Evaluating Functions Expressed in Formulas

Some functions are defined by mathematical rules or procedures
expressed in equation form. If it is possible to express the function
output with a formula involving the input quantity, then we can
define a function in algebraic form. For example, the equation

expresses a functional relationship between
and . We can rewrite it to decide if is a function of .

How To: Given a function in equation
form, write its algebraic formula.

1. Solve the equation to isolate the output variable
on one side of the equal sign, with the other side
as an expression that involves only the input
variable.

2. Use all the usual algebraic methods for solving
equations, such as adding or subtracting the same
quantity to or from both sides, or multiplying or
dividing both sides of the equation by the same
quantity.
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Example 9: Finding an Equation of a
Function

Express the relationship as a

function , if possible.

Solution

To express the relationship in this form, we need to be
able to write the relationship where is a function of

, which means writing it as p = expression involving n.

Therefore, as a function of is written as

Find the input and output values of a function | 371



A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=96

Analysis of the Solution

It is important to note that not every relationship expressed by an
equation can also be expressed as a function with a formula.
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Example 10: Expressing the Equation of
a Circle as a Function

Does the equation represent a

function with as input and as output? If so, express
the relationship as a function .

Solution

First we subtract from both sides.

We now try to solve for in this equation.

We get two outputs corresponding to the same input,
so this relationship cannot be represented as a single
function

.
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Try It 4

If , express as a function of .

Solution

Q & A

Are there relationships expressed by an equation
that do represent a function but which still cannot be
represented by an algebraic formula?

Yes, this can happen. For example, given the equation
, if we want to express as a function of

, there is no simple algebraic formula involving only
that equals . However, each does determine a unique
value for , and there are mathematical procedures by
which can be found to any desired accuracy. In this
case, we say that the equation gives an implicit (implied)
rule for as a function of , even though the formula
cannot be written explicitly.
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Evaluating a Function Given in Tabular Form

As we saw above, we can represent functions in tables. Conversely,
we can use information in tables to write functions, and we can
evaluate functions using the tables. For example, how well do our
pets recall the fond memories we share with them? There is an
urban legend that a goldfish has a memory of 3 seconds, but this is
just a myth. Goldfish can remember up to 3 months, while the beta
fish has a memory of up to 5 months. And while a puppy’s memory
span is no longer than 30 seconds, the adult dog can remember for
5 minutes. This is meager compared to a cat, whose memory span
lasts for 16 hours.

The function that relates the type of pet to the duration of its
memory span is more easily visualized with the use of a table. See
the table below.

Pet Memory span in hours

Puppy 0.008

Adult dog 0.083

Cat 16

Goldfish 2160

Beta fish 3600

At times, evaluating a function in table form may be more useful
than using equations. Here let us call the function .

The domain of the function is the type of pet and the range is
a real number representing the number of hours the pet’s memory
span lasts. We can evaluate the function at the input value of
“goldfish.” We would write . Notice that,

to evaluate the function in table form, we identify the input value
and the corresponding output value from the pertinent row of the
table. The tabular form for function seems ideally suited to this
function, more so than writing it in paragraph or function form.
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How To: Given a function represented
by a table, identify specific output and
input values.

1. Find the given input in the row (or column) of
input values.

2. Identify the corresponding output value paired
with that input value.

3. Find the given output values in the row (or
column) of output values, noting every time that
output value appears.

4. Identify the input value(s) corresponding to the
given output value.

Example 11: Evaluating and Solving a
Tabular Function

Using the table below,

1. Evaluate .

2. Solve .
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n 1 2 3 4 5

g(n) 8 6 7 6 8

Solution

• Evaluating means determining the output

value of the function for the input value of
. The table output value corresponding to
is 7, so .

• Solving means identifying the

input values, , that produce an output value of 6.
The table below shows two solutions: and

.

n 1 2 3 4 5

g(n) 8 6 7 6 8

When we input 2 into the function , our output is 6.
When we input 4 into the function , our output is also
6.
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Try It 5

Using the table in Example 11, evaluate .

Solution

Finding Function Values from a Graph

Evaluating a function using a graph also requires finding the
corresponding output value for a given input value, only in this case,
we find the output value by looking at the graph. Solving a function
equation using a graph requires finding all instances of the given
output value on the graph and observing the corresponding input
value(s).

Example 12: Reading Function Values
from a Graph

Given the graph in Figure 6,

1. Evaluate .
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2. Solve .

Figure 6
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Solution

1. To evaluate , locate the point on the

curve where , then read the y-coordinate
of that point. The point has coordinates ,

so . See Figure 7.

Figure 7

2. To solve , we find the output value

on the vertical axis. Moving horizontally along
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the line , we locate two points of the curve

with output value and .

These points represent the two solutions to
or . This means

and , or when the

input is or the output is See Figure 8.

Figure 8
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Try It 6

Using Figure 7, solve .

Solution
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63. Determine whether a
function is one-to-one

Figure 9

Some functions have a given output value that corresponds to two
or more input values. For example, in the following stock chart the
stock price was $1000 on five different dates, meaning that there
were five different input values that all resulted in the same output
value of $1000.

However, some functions have only one input value for each
output value, as well as having only one output for each input. We
call these functions one-to-one functions. As an example, consider
a school that uses only letter grades and decimal equivalents, as
listed in.

Letter grade Grade point average

A 4.0

B 3.0

C 2.0

D 1.0

This grading system represents a one-to-one function, because

Determine whether a function is
one-to-one | 383



each letter input yields one particular grade point average output
and each grade point average corresponds to one input letter.

To visualize this concept, let’s look again at the two simple
functions sketched in (a)and (b) of Figure 10.

Figure 10

The function in part (a) shows a relationship that is not a one-to-one
function because inputs and both give output . The function in
part (b) shows a relationship that is a one-to-one function because
each input is associated with a single output.

A General Note: One-to-One Function

A one-to-one function is a function in which each
output value corresponds to exactly one input value.
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Example 13: Determining Whether a
Relationship Is a One-to-One Function

Is the area of a circle a function of its radius? If yes, is
the function one-to-one?

Solution

A circle of radius has a unique area measure given
by , so for any input, , there is only one

output, . The area is a function of radius .

If the function is one-to-one, the output value, the
area, must correspond to a unique input value, the
radius. Any area measure is given by the formula

. Because areas and radii are positive

numbers, there is exactly one solution: . So

the area of a circle is a one-to-one function of the
circle’s radius.
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Try It 7

1. Is a balance a function of the bank account
number?

2. Is a bank account number a function of the
balance?

3. Is a balance a one-to-one function of the bank
account number?

Solution
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64. Use the vertical line test
to identify functions

As we have seen in some examples above, we can represent a
function using a graph. Graphs display a great many input-output
pairs in a small space. The visual information they provide often
makes relationships easier to understand. By convention, graphs are
typically constructed with the input values along the horizontal axis
and the output values along the vertical axis.

The most common graphs name the input value and the output
value , and we say is a function of , or when

the function is named . The graph of the function is the set of all

points in the plane that satisfies the equation

. If the function is defined for only a few input values, then the
graph of the function is only a few points, where the x-coordinate
of each point is an input value and the y-coordinate of each point
is the corresponding output value. For example, the black dots on
the graph in Figure 11 tell us that and .

However, the set of all points satisfying is a

curve. The curve shown includes and because the

curve passes through those points.
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Figure 11

The vertical line test can be used to determine whether a graph
represents a function. If we can draw any vertical line that intersects
a graph more than once, then the graph does not define a function
because a function has only one output value for each input value.

Figure 12
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How To: Given a graph, use the vertical
line test to determine if the graph
represents a function.

1. Inspect the graph to see if any vertical line
drawn would intersect the curve more than once.

2. If there is any such line, determine that the
graph does not represent a function.

Example 14: Applying the Vertical Line
Test

Which of the graphs represent(s) a function
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Figure 13

Solution

If any vertical line intersects a graph more than once,
the relation represented by the graph is not a function.
Notice that any vertical line would pass through only
one point of the two graphs shown in parts (a) and (b) of
Figure 13. From this we can conclude that these two
graphs represent functions. The third graph does not
represent a function because, at most x-values, a
vertical line would intersect the graph at more than one
point.
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Figure 14
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A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=98

Try It 8

Does the graph in Figure 15 represent a function?
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Figure 15

Solution

Using the Horizontal Line Test Once we have
determined that a graph defines a function, an
easy way to determine if it is a one-to-one
function is to use the horizontal line test. Draw
horizontal lines through the graph. If any
horizontal line intersects the graph more than
once, then the graph does not represent a
one-to-one function. How To: Given a graph of a
function, use the horizontal line test to
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determine if the graph represents a one-to-one
function.

1. Inspect the graph to see if any horizontal line drawn would
intersect the curve more than once.

2. If there is any such line, determine that the function is not
one-to-one.

Example 15: Applying the Horizontal
Line Test

Consider the functions (a), and (b)shown in the graphs
in Figure 16.

Figure 16

Are either of the functions one-to-one?

394 | Use the vertical line test to identify functions



Solution

The function in (a) is not one-to-one. The horizontal
line shown in Figure 17 intersects the graph of the
function at two points (and we can even find horizontal
lines that intersect it at three points.)

Figure 17
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The function in (b) is one-to-one. Any horizontal line
will intersect a diagonal line at most once.

https://youtu.be/tbSGdcSN8RE
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65. Graph the functions listed
in the library of functions

Identifying Basic Toolkit Functions

In this text, we will be exploring functions—the shapes of their
graphs, their unique characteristics, their algebraic formulas, and
how to solve problems with them. When learning to read, we start
with the alphabet. When learning to do arithmetic, we start with
numbers. When working with functions, it is similarly helpful to
have a base set of building-block elements. We call these our
“toolkit functions,” which form a set of basic named functions for
which we know the graph, formula, and special properties. Some
of these functions are programmed to individual buttons on many
calculators. For these definitions we will use as the input variable
and as the output variable.

We will see these toolkit functions, combinations of toolkit
functions, their graphs, and their transformations frequently
throughout this book. It will be very helpful if we can recognize
these toolkit functions and their features quickly by name, formula,
graph, and basic table properties. The graphs and sample table
values are included with each function shown below.
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Toolkit Functions

Name Function Graph

Constant
,

where is a
constant

Identity
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Toolkit Functions

Name Function Graph

Absolute
value

Quadratic
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Toolkit Functions

Name Function Graph

Cubic

Reciprocal
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Toolkit Functions

Name Function Graph

Reciprocal
squared

Square
root
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Toolkit Functions

Name Function Graph

Cube root
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66. Key Concepts & Glossary

Key Equations

Constant function , where is a constant

Identity function

Absolute value function

Quadratic function

Cubic function

Reciprocal function

Reciprocal squared function

Square root function

Cube root function

Key Concepts

• A relation is a set of ordered pairs. A function is a specific type
of relation in which each domain value, or input, leads to
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exactly one range value, or output.
• Function notation is a shorthand method for relating the input

to the output in the form .

• In tabular form, a function can be represented by rows or
columns that relate to input and output values.

• To evaluate a function, we determine an output value for a
corresponding input value. Algebraic forms of a function can
be evaluated by replacing the input variable with a given value.

• To solve for a specific function value, we determine the input
values that yield the specific output value.

• An algebraic form of a function can be written from an
equation.

• Input and output values of a function can be identified from a
table.

• Relating input values to output values on a graph is another
way to evaluate a function.

• function is one-to-one if each output value corresponds to
only one input value.

• A graph represents a function if any vertical line drawn on the
graph intersects the graph at no more than one point.

• The graph of a one-to-one function passes the horizontal line
test.

Glossary

dependent variable
an output variable

domain
the set of all possible input values for a relation

404 | Key Concepts & Glossary



function
a relation in which each input value yields a unique output
value

horizontal line test
a method of testing whether a function is one-to-one by
determining whether any horizontal line intersects the graph
more than once

independent variable
an input variable

input
each object or value in a domain that relates to another object
or value by a relationship known as a function

one-to-one function
a function for which each value of the output is associated
with a unique input value

output
each object or value in the range that is produced when an
input value is entered into a function

range
the set of output values that result from the input values in a
relation

relation
a set of ordered pairs

vertical line test
a method of testing whether a graph represents a function by
determining whether a vertical line intersects the graph no
more than once
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67. Section Exercises

1. What is the difference between a relation and a function?
2. What is the difference between the input and the output of a

function?
3. Why does the vertical line test tell us whether the graph of a

relation represents a function?
4. How can you determine if a relation is a one-to-one function?
5. Why does the horizontal line test tell us whether the graph of a

function is one-to-one?
For the following exercises, determine whether the relation

represents a function.
6.

7.

For the following exercises, determine whether the relation
represents as a function of .

8.

9.

10.

11.

12.

13.

14.

15.

16.
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17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

For the following exercises, evaluate the function at the
indicated values

.

27.

28.

29.

30.

31.

32. Given the function , evaluate

.

33. Given the function , evaluate

.

34. Given the function
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a. Evaluate .

b. Solve .

35. Given the function

a. Evaluate .

b. Solve .

36. Given the function

a. Evaluate .

b. Solve .

37. Given the function

a. Evaluate .

b. Solve .

38. Given the function

a. Evaluate .

b. Solve .

39. Consider the relationship .
a. Write the relationship as a function .

b. Evaluate .

c. Solve .

For the following exercises, use the vertical line test to determine
which graphs show relations that are functions.

40.
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41.

42.
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43.

44.
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45.

46.
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47.

48.
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49.

50.
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51.

52. Given the following graph,
a. Evaluate .

b. Solve for .

53. Given the following graph,
a. Evaluate .

b. Solve for .
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54. Given the following graph,
a. Evaluate .

b. Solve for .

For the following exercises, determine if the given graph is a one-
to-one function.

55.
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56.

57.

58.
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59.

For the following exercises, determine whether the relation
represents a function.

60.

61.

62.

For the following exercises, determine if the relation represented
in table form represents as a function of .

63.

5 10 15

3 8 14
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64.

5 10 15

3 8 8

65.

5 10 10

3 8 14

For the following exercises, use the function represented in the
table below.

0 74

1 28

2 1

3 53

4 56

5 3

6 36

7 45

8 14

9 47

66. Evaluate .

67. Solve .

For the following exercises, evaluate the function at the values

, and .

68.

69.
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70.

71.

72.

73.

For the following exercises, evaluate the expressions, given
functions , and

•

•

•

74.

75.

For the following exercises, graph on the given viewing

window. Determine the corresponding range for each viewing
window. Show each graph.

76.

77.

78.

For the following exercises, graph on the given viewing

window. Determine the corresponding range for each viewing
window. Show each graph.

79.

80.

81.

For the following exercises, graph on the given viewing

window. Determine the corresponding range for each viewing
window. Show each graph.
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82.

83.

84.

For the following exercises, graph on the given viewing

window. Determine the corresponding range for each viewing
window. Show each graph.

85.

86.

87.

88. The amount of garbage, , produced by a city with population
is given by . is measured in tons per week, and

is measured in thousands of people.
a. The town of Tola has a population of 40,000 and

produces 13 tons of garbage each week. Express this
information in terms of the function .

b. Explain the meaning of the statement .

89. The number of cubic yards of dirt, , needed to cover a
garden with area square feet is given by .

a. A garden with area 5000 ft2 requires 50 yd3 of dirt.
Express this information in terms of the function .
b. Explain the meaning of the statement .

90. Let be the number of ducks in a lake years after 1990.

Explain the meaning of each statement:
a.

b.

91. Let be the height above ground, in feet, of a rocket

seconds after launching. Explain the meaning of each statement:
a.

b.

92. Show that the function is not

one-to-one.
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PART X

DOMAIN AND RANGE
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68. Introduction to Domain
and Range

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Find the domain of a function defined by an
equation.

• Graph piecewise-defined functions.

If you’re in the mood for a scary movie, you may want to check out
one of the five most popular horror movies of all time—I am Legend,
Hannibal, The Ring, The Grudge, and The Conjuring. Figure 1 shows
the amount, in dollars, each of those movies grossed when they
were released as well as the ticket sales for horror movies in general
by year. Notice that we can use the data to create a function of the
amount each movie earned or the total ticket sales for all horror
movies by year. In creating various functions using the data, we can
identify different independent and dependent variables, and we can
analyze the data and the functions to determine the domain and
range. In this section, we will investigate methods for determining
the domain and range of functions such as these.
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Figure 1. Based on data compiled by www.the-numbers.com.
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69. Find the domain of a
function defined by an
equation

In Functions and Function Notation, we were introduced to the
concepts of domain and range. In this section, we will practice
determining domains and ranges for specific functions. Keep in
mind that, in determining domains and ranges, we need to consider
what is physically possible or meaningful in real-world examples,
such as tickets sales and year in the horror movie example above.
We also need to consider what is mathematically permitted. For
example, we cannot include any input value that leads us to take an
even root of a negative number if the domain and range consist of
real numbers. Or in a function expressed as a formula, we cannot
include any input value in the domain that would lead us to divide
by 0.

Figure 2

We can visualize the domain as a “holding area” that contains “raw
materials” for a “function machine” and the range as another
“holding area” for the machine’s products.
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We can write the domain and range in interval notation, which
uses values within brackets to describe a set of numbers. In interval
notation, we use a square bracket [ when the set includes the
endpoint and a parenthesis ( to indicate that the endpoint is either
not included or the interval is unbounded. For example, if a person
has $100 to spend, he or she would need to express the interval that
is more than 0 and less than or equal to 100 and write .

We will discuss interval notation in greater detail later.
Let’s turn our attention to finding the domain of a function whose

equation is provided. Oftentimes, finding the domain of such
functions involves remembering three different forms. First, if the
function has no denominator or an even root, consider whether the
domain could be all real numbers. Second, if there is a denominator
in the function’s equation, exclude values in the domain that force
the denominator to be zero. Third, if there is an even root, consider
excluding values that would make the radicand negative.

Before we begin, let us review the conventions of interval
notation:

• The smallest term from the interval is written first.
• The largest term in the interval is written second, following a

comma.
• Parentheses, ( or ), are used to signify that an endpoint is not

included, called exclusive.
• Brackets, [ or ], are used to indicate that an endpoint is

included, called inclusive.
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The table below gives a summary of interval notation.

Example 1: Finding the Domain of a
Function as a Set of Ordered Pairs

Find the domain of the following function:

.
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Solution

First identify the input values. The input value is the
first coordinate in an ordered pair. There are no
restrictions, as the ordered pairs are simply listed. The
domain is the set of the first coordinates of the ordered
pairs.

Try It 1

Find the domain of the function:

Solution
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How To: Given a function written in
equation form, find the domain.

1. Identify the input values.
2. Identify any restrictions on the input and

exclude those values from the domain.
3. Write the domain in interval form, if possible.

Example 2: Finding the Domain of a
Function

Find the domain of the function .
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Solution

The input value, shown by the variable in the
equation, is squared and then the result is lowered by
one. Any real number may be squared and then be
lowered by one, so there are no restrictions on the
domain of this function. The domain is the set of real
numbers.

In interval form, the domain of is .

Try It 2

Find the domain of the function:
.

Solution

How To: Given a function written in an
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equation form that includes a fraction,
find the domain.

1. Identify the input values.
2. Identify any restrictions on the input. If there is

a denominator in the function’s formula, set the
denominator equal to zero and solve for . If the
function’s formula contains an even root, set the
radicand greater than or equal to 0, and then
solve.

3. Write the domain in interval form, making sure
to exclude any restricted values from the domain.

Example 3: Finding the Domain of a
Function Involving a Denominator
(Rational Function)

Find the domain of the function .
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Solution

When there is a denominator, we want to include only
values of the input that do not force the denominator to
be zero. So, we will set the denominator equal to 0 and
solve for .

Now, we will exclude 2 from the domain. The answers

are all real numbers where or 2"
title="x>2" class="latex mathjax">. We can use a symbol
known as the union, , to combine the two sets. In
interval notation, we write the solution:

.

Figure 3

In interval form, the domain of is

.
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A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=105

Try It 3

Find the domain of the function: .

Solution
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How To: Given a function written in
equation form including an even root,
find the domain.

1. Identify the input values.
2. Since there is an even root, exclude any real

numbers that result in a negative number in the
radicand. Set the radicand greater than or equal to
zero and solve for .

3. The solution(s) are the domain of the function. If
possible, write the answer in interval form.

Example 4: Finding the Domain of a
Function with an Even Root

Find the domain of the function

.
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Solution

When there is an even root in the formula, we exclude
any real numbers that result in a negative number in the
radicand.

Set the radicand greater than or equal to zero and
solve for .

Now, we will exclude any number greater than 7 from
the domain. The answers are all real numbers less than
or equal to , or .
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A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=105

Try It 4

Find the domain of the function .

Solution
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Q & A

Can there be functions in which the domain and
range do not intersect at all?

Yes. For example, the function has

the set of all positive real numbers as its domain but the
set of all negative real numbers as its range. As a more
extreme example, a function’s inputs and outputs can be
completely different categories ( for example, names of
weekdays as inputs and numbers as outputs, as on an
attendance chart), in such cases the domain and range
have no elements in common.
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70. Use notations to specify
domain and range

In the previous examples, we used inequalities and lists to describe
the domain of functions. We can also use inequalities, or other
statements that might define sets of values or data, to describe
the behavior of the variable in set-builder notation. For example,

describes the behavior of in set-builder

notation. The braces { } are read as “the set of,” and the vertical bar
| is read as “such that,” so we would read as

“the set of x-values such that 10 is less than or equal to , and is
less than 30.”

The table below compares inequality notation, set-builder
notation, and interval notation.
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Inequality
Notation

Set-builder
Nota

5 < h ≤ 10 { h | 5 <
10}

5 ≤ h < 10 { h | 5 ≤
10}

5 < h < 10 { h | 5 < 10 }

h < 10 { h |

h ≥ 10 { h |

All real
numbers ℝ

To combine two intervals using inequality notation or set-builder
notation, we use the word “or.” As we saw in earlier examples, we
use the union symbol, , to combine two unconnected intervals.
For example, the union of the sets and is the

set . It is the set of all elements that belong to one

or the other (or both) of the original two sets. For sets with a finite
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number of elements like these, the elements do not have to be listed
in ascending order of numerical value. If the original two sets have
some elements in common, those elements should be listed only
once in the union set. For sets of real numbers on intervals, another
example of a union is

This video describes how to use interval notation to describe a set.

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=106

This video describes how to use Set-Builder notation to describe a
set.
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A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=106

A General Note: Set-Builder Notation
and Interval Notation

Set-builder notation is a method of specifying a set of
elements that satisfy a certain condition. It takes the
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form which is read as,

“the set of all such that the statement about is
true.” For example,

Interval notation is a way of describing sets that
include all real numbers between a lower limit that may
or may not be included and an upper limit that may or
may not be included. The endpoint values are listed
between brackets or parentheses. A square bracket
indicates inclusion in the set, and a parenthesis
indicates exclusion from the set. For example,

How To: Given a line graph, describe
the set of values using interval notation.

1. Identify the intervals to be included in the set by
determining where the heavy line overlays the real
line.

2. At the left end of each interval, use [ with each
end value to be included in the set (solid dot) or (
for each excluded end value (open dot).

3. At the right end of each interval, use ] with each

442 | Use notations to specify domain and range



end value to be included in the set (filled dot) or )
for each excluded end value (open dot).

4. Use the union symbol to combine all intervals
into one set.

Example 5: Describing Sets on the
Real-Number Line

Describe the intervals of values shown in Figure
4 using inequality notation, set-builder notation, and
interval notation.

Figure 4
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Solution

To describe the values, , included in the intervals
shown, we would say, ” is a real number greater than
or equal to 1 and less than or equal to 3, or a real
number greater than 5.”

Inequalit
y 5" title="1\le x\

le 3\text{or}x>5" class="latex mathjax">

Set-buil
der
notation

5\
right\}" title="\left\{x|1\le x\le 3\
text{or}x>5\right\}" class="latex mathjax">

Interval
notation

Remember that, when writing or reading interval
notation, using a square bracket means the boundary is
included in the set. Using a parenthesis means the
boundary is not included in the set.

Try It 5

Given Figure 5, specify the graphed set in

1. words
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2. set-builder notation
3. interval notation

Figure 5

Solution
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71. Find domain and range
from graphs

Another way to identify the domain and range of functions is by
using graphs. Because the domain refers to the set of possible input
values, the domain of a graph consists of all the input values shown
on the x-axis. The range is the set of possible output values, which
are shown on the y-axis. Keep in mind that if the graph continues
beyond the portion of the graph we can see, the domain and range
may be greater than the visible values. See Figure 6.
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Figure 6

We can observe that the graph extends horizontally from to
the right without bound, so the domain is . The vertical

extent of the graph is all range values and below, so the range
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is . Note that the domain and range are always written

from smaller to larger values, or from left to right for domain, and
from the bottom of the graph to the top of the graph for range.

Example 6: Finding Domain and Range
from a Graph

Find the domain and range of the function whose
graph is shown in Figure 7.

Figure 7
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Solution

We can observe that the horizontal extent of the
graph is –3 to 1, so the domain of is .

Figure 8

The vertical extent of the graph is 0 to –4, so the
range is .
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A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=107

Example 7: Finding Domain and Range
from a Graph of Oil Production

Find the domain and range of the function whose
graph is shown in Figure 9.
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Figure 9. (credit: modification of work by the U.S. Energy
Information Administration)

Solution

The input quantity along the horizontal axis is “years,”
which we represent with the variable for time. The
output quantity is “thousands of barrels of oil per day,”
which we represent with the variable for barrels. The
graph may continue to the left and right beyond what is
viewed, but based on the portion of the graph that is
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visible, we can determine the domain as
and the range as approximately

.

In interval notation, the domain is [1973, 2008], and
the range is about [180, 2010]. For the domain and the
range, we approximate the smallest and largest values
since they do not fall exactly on the grid lines.

Try It 6

Given the graph in Figure 10, identify the domain and
range using interval notation.
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Figure 10

Solution

Q & A

Can a function’s domain and range be the same?

Yes. For example, the domain and range of the cube root
function are both the set of all real numbers.
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72. Find domains and ranges
of the toolkit functions

We will now return to our set of toolkit functions to determine the
domain and range of each.

11

Figure 11. For the constant function , the domain

consists of all real numbers; there are no restrictions on the input.
The only output value is the constant , so the range is the set
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that contains this single element. In interval notation, this is
written as , the interval that both begins and ends with .

12

Figure 12. For the identity function , there is no

restriction on . Both the domain and range are the set of all real
numbers.
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13

Figure 13. For the absolute value function , there is

no restriction on . However, because absolute value is defined as
a distance from 0, the output can only be greater than or equal to

0.
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14

Figure 14. For the quadratic function , the domain is

all real numbers since the horizontal extent of the graph is the
whole real number line. Because the graph does not include any
negative values for the range, the range is only nonnegative real

numbers.
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15

Figure 15. For the cubic function , the domain is all

real numbers because the horizontal extent of the graph is the
whole real number line. The same applies to the vertical extent of

the graph, so the domain and range include all real numbers.
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16

Figure 16. For the reciprocal function , we cannot

divide by 0, so we must exclude 0 from the domain. Further, 1
divided by any value can never be 0, so the range also will not

include 0. In set-builder notation, we could also write
, the set of all real numbers that are not zero.
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17

Figure 17. For the reciprocal squared function , we

cannot divide by , so we must exclude from the domain. There
is also no that can give an output of 0, so 0 is excluded from the

range as well. Note that the output of this function is always
positive due to the square in the denominator, so the range

includes only positive numbers.
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18

Figure 18. For the square root function , we cannot

take the square root of a negative real number, so the domain must
be 0 or greater. The range also excludes negative numbers because

the square root of a positive number is defined to be positive,
even though the square of the negative number also gives

us .
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19

Figure 19. For the cube root function , the domain

and range include all real numbers. Note that there is no problem
taking a cube root, or any odd-integer root, of a negative number,

and the resulting output is negative (it is an odd function).

How To: Given the formula for a
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function, determine the domain and
range.

1. Exclude from the domain any input values that
result in division by zero.

2. Exclude from the domain any input values that
have nonreal (or undefined) number outputs.

3. Use the valid input values to determine the
range of the output values.

4. Look at the function graph and table values to
confirm the actual function behavior.

Example 8: Finding the Domain and
Range Using Toolkit Functions

Find the domain and range of .
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Solution

There are no restrictions on the domain, as any real
number may be cubed and then subtracted from the
result.

The domain is and the range is also

.

Example 9: Finding the Domain and
Range

Find the domain and range of .
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Solution

We cannot evaluate the function at because
division by zero is undefined. The domain is

. Because the function is

never zero, we exclude 0 from the range. The range is
.

Example 10: Finding the Domain and
Range

Find the domain and range of .
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Solution

We cannot take the square root of a negative number,
so the value inside the radical must be nonnegative.

The domain of is .

We then find the range. We know that ,

and the function value increases as increases without
any upper limit. We conclude that the range of is

.

Analysis of the Solution

Figure 20 represents the function .
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Figure 20

Try It 7

Find the domain and range of .

Solution
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73. Graph piecewise-defined
functions

Sometimes, we come across a function that requires more than
one formula in order to obtain the given output. For example, in
the toolkit functions, we introduced the absolute value function

. With a domain of all real numbers and a range of

values greater than or equal to 0, absolute value can be defined
as the magnitude, or modulus, of a real number value regardless
of sign. It is the distance from 0 on the number line. All of these
definitions require the output to be greater than or equal to 0.

If we input 0, or a positive value, the output is the same as the
input.

If we input a negative value, the output is the opposite of the input.

Because this requires two different processes or pieces, the
absolute value function is an example of a piecewise function. A
piecewise function is a function in which more than one formula is
used to define the output over different pieces of the domain.

We use piecewise functions to describe situations in which a
rule or relationship changes as the input value crosses certain
“boundaries.” For example, we often encounter situations in
business for which the cost per piece of a certain item is discounted
once the number ordered exceeds a certain value. Tax brackets are
another real-world example of piecewise functions. For example,
consider a simple tax system in which incomes up to $10,000 are
taxed at 10%, and any additional income is taxed at 20%. The tax on
a total income, S, would be 0.1S if $10,000 and 1000 + 0.2 (S
– $10,000), if S> $10,000.
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A General Note: Piecewise Function

A piecewise function is a function in which more than
one formula is used to define the output. Each formula
has its own domain, and the domain of the function is
the union of all these smaller domains. We notate this
idea like this:

In piecewise notation, the absolute value function is

How To: Given a piecewise function,
write the formula and identify the
domain for each interval.

1. Identify the intervals for which different rules
apply.
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2. Determine formulas that describe how to
calculate an output from an input in each interval.

3. Use braces and if-statements to write the
function.

Example 11: Writing a Piecewise
Function

A museum charges $5 per person for a guided tour
with a group of 1 to 9 people or a fixed $50 fee for a
group of 10 or more people. Write a function relating
the number of people, , to the cost, .

Solution

Two different formulas will be needed. For n-values
under 10, C=5n. For values of n that are 10 or greater,
C=50.
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C(n)=

Analysis of the Solution

The function is represented in Figure 21. The graph is a diagonal
line from to and a constant after that. In this
example, the two formulas agree at the meeting point where

, but not all piecewise functions have this property.

Figure 21
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A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=109

Example 12: Working with a Piecewise
Function

A cell phone company uses the function below to
determine the cost, , in dollars for gigabytes of data
transfer.
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Find the cost of using 1.5 gigabytes of data and the
cost of using 4 gigabytes of data.

Solution

To find the cost of using 1.5 gigabytes of data, C(1.5),
we first look to see which part of the domain our input
falls in. Because 1.5 is less than 2, we use the first
formula.

C(1.5) = $25

To find the cost of using 4 gigabytes of data, C(4), we
see that our input of 4 is greater than 2, so we use the
second formula.

C(4)=25 + 10( 4-2) =$45

Analysis of the Solution

The function is represented in Figure 22. We can see where the
function changes from a constant to a shifted and stretched identity
at . We plot the graphs for the different formulas on a
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common set of axes, making sure each formula is applied on its
proper domain.

Figure 22

How To: Given a piecewise function,
sketch a graph.

1. Indicate on the x-axis the boundaries defined by
the intervals on each piece of the domain.

2. For each piece of the domain, graph on that
interval using the corresponding equation
pertaining to that piece. Do not graph two
functions over one interval because it would
violate the criteria of a function.

474 | Graph piecewise-defined functions



Example 13: Graphing a Piecewise
Function

Sketch a graph of the function.

Solution

Each of the component functions is from our library
of toolkit functions, so we know their shapes. We can
imagine graphing each function and then limiting the
graph to the indicated domain. At the endpoints of the
domain, we draw open circles to indicate where the
endpoint is not included because of a less-than or
greater-than inequality; we draw a closed circle where
the endpoint is included because of a less-than-or-
equal-to or greater-than-or-equal-to inequality.

Below are the three components of the piecewise
function graphed on separate coordinate systems.
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(a) ; (b)

; (c)

2" title="f\left(x\right)=x\text{
if }x>2" class="latex mathjax">

Figure 23

Now that we have sketched each piece individually,
we combine them in the same coordinate plane.
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Figure 24

Analysis of the Solution

Note that the graph does pass the vertical line test even at
and because the points and are not part of

the graph of the function, though and are.

Try It 8

Graph the following piecewise function.
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Solution

Q&A

Can more than one formula from a piecewise
function be applied to a value in the domain?

No. Each value corresponds to one equation in a
piecewise formula.
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74. Key Concepts & Glossary

Key Concepts

• The domain of a function includes all real input values that
would not cause us to attempt an undefined mathematical
operation, such as dividing by zero or taking the square root of
a negative number.

• The domain of a function can be determined by listing the
input values of a set of ordered pairs.

• The domain of a function can also be determined by identifying
the input values of a function written as an equation.

• Interval values represented on a number line can be described
using inequality notation, set-builder notation, and interval
notation.

• For many functions, the domain and range can be determined
from a graph.

• An understanding of toolkit functions can be used to find the
domain and range of related functions.

• A piecewise function is described by more than one formula.
• A piecewise function can be graphed using each algebraic

formula on its assigned subdomain.

Glossary

interval notation
a method of describing a set that includes all numbers between
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a lower limit and an upper limit; the lower and upper values
are listed between brackets or parentheses, a square bracket
indicating inclusion in the set, and a parenthesis indicating
exclusion

piecewise function
a function in which more than one formula is used to define
the output

set-builder notation
a method of describing a set by a rule that all of its members
obey; it takes the form
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75. Section Exercises

1. Why does the domain differ for different functions?
2. How do we determine the domain of a function defined by an

equation?
3. Explain why the domain of is different from

the domain of .

4. When describing sets of numbers using interval notation,
when do you use a parenthesis and when do you use a bracket?

5. How do you graph a piecewise function?

For the following exercises, find the domain of each function using
interval notation.

6.

7.

8.

9.

10.

11.

12.

13.

14.
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26. Find the domain of the function

by:
a. using algebra.
b. graphing the function in the radicand and determining
intervals on the x-axis for which the radicand is
nonnegative.
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For the following exercises, write the domain and range of each
function using interval notation.

27.

Domain: ________ Range: ________
28.

29.

Section Exercises | 483



30.

31.

32.
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33.

34.
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35.

36.

486 | Section Exercises



37.

For the following exercises, sketch a graph of the piecewise
function. Write the domain in interval notation.
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38.

39.

40.

41.

42.

43.

44.

45.

For the following exercises, given each function , evaluate

, and .

46.

47.

48.

For the following exercises, given each function , evaluate

, and .
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49.

50.

51.

For the following exercises, write the domain for the piecewise
function in interval notation.

52.

53.

54.

55. Graph on the viewing window

and . Determine the corresponding range for the

viewing window. Show the graphs.

56. Graph on the viewing window and

. Determine the corresponding range for the viewing

window. Show the graphs.
57. Suppose the range of a function is . What is the

range of

58. Create a function in which the range is all nonnegative real
numbers.

59 .Create a function in which the domain is .
60. The cost in dollars of making items is given by the function

.
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A. The fixed cost is determined when zero items are
produced. Find the fixed cost for this item.
B. What is the cost of making 25 items?
C. Suppose the maximum cost allowed is $1500. What are
the domain and range of the cost function,

61. The height of a projectile is a function of the time it is in
the air. The height in feet for seconds is given by the function

. What is the domain of the function?

What does the domain mean in the context of the problem?
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PART XI

RATES OF CHANGE AND
BEHAVIOR OF GRAPHS
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76. Introduction to Rates of
Change and Behaviors of
Graphs

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Find the average rate of change of a function.
• Use a graph to determine where a function is

increasing, decreasing, or constant.
• Use a graph to locate local maxima and local

minima.
• Use a graph to locate the absolute maximum and

absolute minimum.

Gasoline costs have experienced some wild fluctuations over the
last several decades. The table below1 lists the average cost, in
dollars, of a gallon of gasoline for the years 2005–2012. The cost of
gasoline can be considered as a function of year.

1. http://www.eia.gov/totalenergy/data/annual/
showtext.cfm?t=ptb0524. Accessed 3/5/2014.
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2005 2006 2007 2008 2009 2010 2011 2012

2.31 2.62 2.84 3.30 2.41 2.84 3.58 3.68

If we were interested only in how the gasoline prices changed
between 2005 and 2012, we could compute that the cost per gallon
had increased from $2.31 to $3.68, an increase of $1.37. While this is
interesting, it might be more useful to look at how much the price
changed per year. In this section, we will investigate changes such
as these.
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77. Find the average rate of
change of a function

2005 2006 2007 2008 2009 2010 2011 2012

2.31 2.62 2.84 3.30 2.41 2.84 3.58 3.68

The price change per year is a rate of change because it describes
how an output quantity changes relative to the change in the input
quantity. We can see that the price of gasoline in the table above did
not change by the same amount each year, so the rate of change
was not constant. If we use only the beginning and ending data,
we would be finding the average rate of change over the specified
period of time. To find the average rate of change, we divide the
change in the output value by the change in the input value.

Average rate of change=

=

=

=

The Greek letter

(delta) signifies the change in a quantity; we read the ratio as
“delta-y over delta-x” or “the change in divided by the change
in .” Occasionally we write

instead of
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, which still represents the change in the function’s output value
resulting from a change to its input value. It does not mean we are
changing the function into some other function.

In our example, the gasoline price increased by $1.37 from 2005 to
2012. Over 7 years, the average rate of change was

On average, the price of gas increased by about 19.6¢ each year.
Other examples of rates of change include:

• A population of rats increasing by 40 rats per week
• A car traveling 68 miles per hour (distance traveled changes by

68 miles each hour as time passes)
• A car driving 27 miles per gallon (distance traveled changes by

27 miles for each gallon)
• The current through an electrical circuit increasing by 0.125

amperes for every volt of increased voltage
• The amount of money in a college account decreasing by

$4,000 per quarter

A General Note: Rate of Change

A rate of change describes how an output quantity
changes relative to the change in the input quantity. The
units on a rate of change are “output units per input
units.”

The average rate of change between two input values
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is the total change of the function values (output values)
divided by the change in the input values.

How To: Given the value of a function
at different points, calculate the average
rate of change of a function for the
interval between two values and .

1. Calculate the difference

.
2. Calculate the difference

.
3. Find the ratio

.

Find the average rate of change of a function | 497



Example 1: Computing an Average Rate
of Change

Using the data in the table below, find the average
rate of change of the price of gasoline between 2007 and
2009.

20
05

20
06

2
007

20
08

20
09

2
010

2
011

2
012

2.
31

2.
62

2.
84

3.
30

2.
41

2.
84

3
.58

3.
68

Solution

In 2007, the price of gasoline was $2.84. In 2009, the
cost was $2.41. The average rate of change is
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Analysis of the Solution

Note that a decrease is expressed by a negative change or “negative
increase.” A rate of change is negative when the output decreases
as the input increases or when the output increases as the input
decreases.

The following video provides another example of how to find the
average rate of change between two points from a table of values.

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=115
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Try It 1

Using the data in the table below, find the average rate of
change between 2005 and 2010.

20
05

20
06

20
07

20
08

20
09

20
10

2
011

2
012

2.3
1

2.6
2

2.
84

3.3
0

2.4
1

2.
84

3.
58

3.
68

Solution

Example 2: Computing Average Rate of
Change from a Graph

Given the function shown in Figure 1, find the

average rate of change on the interval .
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Figure 1
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Solution

Figure 2

At , the graph shows . At

, the graph shows .

The horizontal change is shown by the red
arrow, and the vertical change is

shown by the turquoise arrow. The output changes by
–3 while the input changes by 3, giving an average rate
of change of
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Analysis of the Solution

Note that the order we choose is very important. If, for example, we

use , we will not get the correct answer. Decide which

point will be 1 and which point will be 2, and keep the coordinates
fixed as and .

Example 3: Computing Average Rate of
Change from a Table

After picking up a friend who lives 10 miles away, Anna
records her distance from home over time. The values
are shown in the table below. Find her average speed
over the first 6 hours.

t (hours) 0 1 2 3 4 5 6 7

D(t)
(miles)

1
0

5
5

9
0

15
3

21
4

24
0

2
82

30
0
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Solution

Here, the average speed is the average rate of change.
She traveled 282 miles in 6 hours, for an average speed
of

The average speed is 47 miles per hour.

Analysis of the Solution

Because the speed is not constant, the average speed depends on
the interval chosen. For the interval [2,3], the average speed is 63
miles per hour.
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Example 4: Computing Average Rate of
Change for a Function Expressed as a
Formula

Compute the average rate of change of

on the interval

Solution

We can start by computing the function values at each
endpoint of the interval.

Now we compute the average rate of change.
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The following video provides another example of finding the
average rate of change of a function given a formula and an interval.

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=115
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Try It 2

Find the average rate of change of
on the interval

.

Solution

Example 5: Finding the Average Rate of
Change of a Force

The electrostatic force , measured in newtons,
between two charged particles can be related to the
distance between the particles , in centimeters, by the

formula . Find the average rate of

change of force if the distance between the particles is
increased from 2 cm to 6 cm.
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Solution

We are computing the average rate of change of

on the interval

.

The average rate of change is

newton per centimeter.

Example 6: Finding an Average Rate of
Change as an Expression

Find the average rate of change of
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on the interval . The

answer will be an expression involving .

Solution

We use the average rate of change formula.

.
=

=

=

=

This result tells us the average rate of change in terms
of between and any other point . For
example, on the interval , the average rate of

change would be .
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Try It 3

Find the average rate of change of
on the interval .

Solution
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78. Use a graph to determine
where a function is
increasing, decreasing, or
constant

As part of exploring how functions change, we can identify intervals
over which the function is changing in specific ways. We say that a
function is increasing on an interval if the function values increase
as the input values increase within that interval. Similarly, a function
is decreasing on an interval if the function values decrease as the
input values increase over that interval. The average rate of change
of an increasing function is positive, and the average rate of change
of a decreasing function is negative. Figure 3 shows examples of
increasing and decreasing intervals on a function.

Use a graph to determine where a
function is increasing, decreasing, or



Figure 3. The function is increasing on

and is decreasing on .

This video further explains how to find where a function is
increasing or decreasing.
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A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=116

While some functions are increasing (or decreasing) over their
entire domain, many others are not. A value of the input where a
function changes from increasing to decreasing (as we go from left
to right, that is, as the input variable increases) is called a local
maximum. If a function has more than one, we say it has local
maxima. Similarly, a value of the input where a function changes
from decreasing to increasing as the input variable increases is
called a local minimum. The plural form is “local minima.” Together,
local maxima and minima are called local extrema, or local extreme
values, of the function. (The singular form is “extremum.”) Often, the
term local is replaced by the term relative. In this text, we will use
the term local.

Clearly, a function is neither increasing nor decreasing on an
interval where it is constant. A function is also neither increasing
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nor decreasing at extrema. Note that we have to speak of local
extrema, because any given local extremum as defined here is not
necessarily the highest maximum or lowest minimum in the
function’s entire domain.

For the function in Figure 4, the local maximum is 16, and it occurs
at . The local minimum is and it occurs at .

Figure 4

To locate the local maxima and minima from a graph, we need to
observe the graph to determine where the graph attains its highest
and lowest points, respectively, within an open interval. Like the
summit of a roller coaster, the graph of a function is higher at a
local maximum than at nearby points on both sides. The graph will
also be lower at a local minimum than at neighboring points. Figure
5 illustrates these ideas for a local maximum.
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Figure 5. Definition of a local maximum.

These observations lead us to a formal definition of local extrema.

A General Note: Local Minima and
Local Maxima

A function is an increasing function on an open

interval if f\left(a\right)" title="f\
left(b\right)>f\left(a\right)" class="latex mathjax"> for
any two input values and in the given interval where

a" title="b>a" class="latex mathjax">.

A function is a decreasing function on an open
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interval if for any two input values

and in the given interval where a" title="b>a"
class="latex mathjax">.

A function has a local maximum at if there

exists an interval with such that,

for any in the interval , .

Likewise, has a local minimum at if there

exists an interval with such that,

for any in the interval , .

Example 7: Finding Increasing and
Decreasing Intervals on a Graph

Given the function in the graph below, identify

the intervals on which the function appears to be
increasing.
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Figure 6

Solution

We see that the function is not constant on any
interval. The function is increasing where it slants
upward as we move to the right and decreasing where it
slants downward as we move to the right. The function
appears to be increasing from to and
from on.

In interval notation, we would say the function
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appears to be increasing on the interval (1,3) and the
interval .

Analysis of the Solution

Notice in this example that we used open intervals (intervals that
do not include the endpoints), because the function is neither
increasing nor decreasing at , , and . These
points are the local extrema (two minima and a maximum).

Example 8: Finding Local Extrema from
a Graph

Graph the function . Then use

the graph to estimate the local extrema of the function
and to determine the intervals on which the function is
increasing.
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Solution

Using technology, we find that the graph of the
function looks like that in Figure 7. It appears there is a
low point, or local minimum, between and

, and a mirror-image high point, or local
maximum, somewhere between and

.

Figure 7
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Analysis of the Solution

Most graphing calculators and graphing utilities can estimate the
location of maxima and minima. Figure 7 provides screen images
from two different technologies, showing the estimate for the local
maximum and minimum.

Figure 8

Based on these estimates, the function is increasing on the interval

and

. Notice that, while we expect the extrema to be symmetric, the
two different technologies agree only up to four decimals due to
the differing approximation algorithms used by each. (The exact
location of the extrema is at , but determining this requires

calculus.)
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Try It 4

Graph the function

to estimate the local extrema of the function. Use these to
determine the intervals on which the function is increasing
and decreasing.

Solution

Example 9: Finding Local Maxima and
Minima from a Graph

For the function whose graph is shown in Figure 9,
find all local maxima and minima.
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Figure 9

Solution

Observe the graph of . The graph attains a local
maximum at because it is the highest point in
an open interval around . The local maximum is
the -coordinate at , which is .

The graph attains a local minimum at
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because it is the lowest point in an open interval around
. The local minimum is the y-coordinate at
, which is .

Analyzing the Toolkit Functions for
Increasing or Decreasing Intervals

We will now return to our toolkit functions and discuss their
graphical behavior in the table below.
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Function Increasing/Decreasing Example

Constant
Function Neither increasing nor

decreasing

Identity Function Increasing

Quadratic
Function

Increasing on
Decreasing on

Minimum at

Cubic Function Increasing
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Function Increasing/Decreasing Example

Reciprocal Decreasing

Reciprocal
Squared Increasing on

Decreasing on

Cube Root
Increasing

Square Root Increasing on
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Function Increasing/Decreasing Example

Absolute Value Increasing on
Decreasing on
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79. Use a graph to locate the
absolute maximum and
absolute minimum

There is a difference between locating the highest and lowest points
on a graph in a region around an open interval (locally) and locating
the highest and lowest points on the graph for the entire domain.
The coordinates (output) at the highest and lowest points are
called the absolute maximum and absolute minimum, respectively.

To locate absolute maxima and minima from a graph, we need to
observe the graph to determine where the graph attains it highest
and lowest points on the domain of the function. See Figure 10.

Figure 10

Use a graph to locate the absolute
maximum and absolute



Not every function has an absolute maximum or minimum value.
The toolkit function is one such function.

A General Note: Absolute Maxima and
Minima

The absolute maximum of at is

where for all in the domain of .

The absolute minimum of at is

where for all in the domain of .

Example 10: Finding Absolute Maxima
and Minima from a Graph

For the function shown in Figure 11, find all absolute
maxima and minima.
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Figure 11

Solution

Observe the graph of . The graph attains an absolute
maximum in two locations, and ,
because at these locations, the graph attains its highest
point on the domain of the function. The absolute
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maximum is the y-coordinate at and ,
which is .

The graph attains an absolute minimum at ,
because it is the lowest point on the domain of the
function’s graph. The absolute minimum is the
y-coordinate at , which is .
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80. Key Concepts & Glossary

Key Equations

Average rate of change

Key Concepts

• A rate of change relates a change in an output quantity to a
change in an input quantity. The average rate of change is
determined using only the beginning and ending data.

• Identifying points that mark the interval on a graph can be
used to find the average rate of change.

• Comparing pairs of input and output values in a table can also
be used to find the average rate of change.

• An average rate of change can also be computed by
determining the function values at the endpoints of an interval
described by a formula.

• The average rate of change can sometimes be determined as
an expression.

• A function is increasing where its rate of change is positive and
decreasing where its rate of change is negative.

• A local maximum is where a function changes from increasing
to decreasing and has an output value larger (more positive or
less negative) than output values at neighboring input values.

• A local minimum is where the function changes from
decreasing to increasing (as the input increases) and has an
output value smaller (more negative or less positive) than
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output values at neighboring input values.
• Minima and maxima are also called extrema.
• We can find local extrema from a graph.
• The highest and lowest points on a graph indicate the maxima

and minima.

Glossary

absolute maximum
the greatest value of a function over an interval

absolute minimum
the lowest value of a function over an interval

average rate of change
the difference in the output values of a function found for two
values of the input divided by the difference between the
inputs

decreasing function
a function is decreasing in some open interval if

for any two input values and in the given

interval where
increasing function

a function is increasing in some open interval if
for any two input values and in the given

interval where
local extrema

collectively, all of a function’s local maxima and minima
local maximum

a value of the input where a function changes from increasing
to decreasing as the input value increases.

local minimum
a value of the input where a function changes from decreasing
to increasing as the input value increases.

rate of change
the change of an output quantity relative to the change of the
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input quantity
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81. Section Exercises

1. Can the average rate of change of a function be constant?
2. If a function is increasing on and decreasing on

, then what can be said about the local extremum of on

3. How are the absolute maximum and minimum similar to and
different from the local extrema?

4. How does the graph of the absolute value function compare
to the graph of the quadratic function, , in terms of

increasing and decreasing intervals?
For exercises 5–15, find the average rate of change of each

function on the interval specified for real numbers or .

5. on

6. on

7. on

8. on

9. on

10. on

11. on
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12. on

13. on

14. on

15.

given

on

For exercises 16–17, consider the graph of .

16. Estimate the average rate of change from to .
17. Estimate the average rate of change from to .
For exercises 18–21, use the graph of each function to estimate the

intervals on which the function is increasing or decreasing.
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18.

19.
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20.

21.
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For exercises 22–23, consider the graph shown below.

22. Estimate the intervals where the function is increasing or
decreasing.

23. Estimate the point(s) at which the graph of has a local
maximum or a local minimum.

For exercises 24–25, consider the graph below.

24. If the complete graph of the function is shown, estimate the
intervals where the function is increasing or decreasing.

25. If the complete graph of the function is shown, estimate the
absolute maximum and absolute minimum.

26. The table below gives the annual sales (in millions of dollars) of
a product from 1998 to 2006. What was the average rate of change
of annual sales (a) between 2001 and 2002, and (b) between 2001 and
2004?
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Year Sales (millions of dollars)

1998 201

1999 219

2000 233

2001 243

2002 249

2003 251

2004 249

2005 243

2006 233

27. The table below gives the population of a town (in thousands)
from 2000 to 2008. What was the average rate of change of
population (a) between 2002 and 2004, and (b) between 2002 and
2006?

Year Population (thousands)

2000 87

2001 84

2002 83

2003 80

2004 77

2005 76

2006 78

2007 81

2008 85

For the following exercises, find the average rate of change of each
function on the interval specified.

28. on
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29. on

30. on

31. on

32. on

33.

on

34.

on

For the following exercises, use a graphing utility to estimate the
local extrema of each function and to estimate the intervals on
which the function is increasing and decreasing.

35.

36.

37.

38.

39.

40.
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41.The graph of the function is shown below.

Based on the calculator screenshot, the point

is which of the following?
A) a relative (local) maximum of the function
B) the vertex of the function
C) the absolute maximum of the function
D) a zero of the function.

42. Let

. Find a number such that the average rate of change of the
function on the interval

is

.

43. Let . Find the number such that the average

rate of change of on the interval
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is

.
44. At the start of a trip, the odometer on a car read 21,395. At the

end of the trip, 13.5 hours later, the odometer read 22,125. Assume
the scale on the odometer is in miles. What is the average speed the
car traveled during this trip?

45. A driver of a car stopped at a gas station to fill up his gas tank.
He looked at his watch, and the time read exactly 3:40 p.m. At this
time, he started pumping gas into the tank. At exactly 3:44, the tank
was full and he noticed that he had pumped 10.7 gallons. What is the
average rate of flow of the gasoline into the gas tank?

46. Near the surface of the moon, the distance that an object
falls is a function of time. It is given by

, where is in seconds and is in feet. If an object is dropped

from a certain height, find the average velocity of the object from
to .

47. The graph below illustrates the decay of a radioactive
substance over days.

Use the graph to estimate the average decay rate from to
.
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PART XII

COMPOSITION OF
FUNCTIONS
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82. Introduction to
Composition of Functions

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Combine functions using algebraic operations.
• Create a new function by composition of functions.
• Evaluate composite functions.
• Find the domain of a composite function.
• Decompose a composite function into its

component functions.

Suppose we want to calculate how much it costs to heat a house on
a particular day of the year. The cost to heat a house will depend
on the average daily temperature, and in turn, the average daily
temperature depends on the particular day of the year. Notice how
we have just defined two relationships: The cost depends on the
temperature, and the temperature depends on the day.

Figure 1
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Using descriptive variables, we can notate these two functions. The
function gives the cost of heating a house for a given

average daily temperature in degrees Celsius. The function
gives the average daily temperature on day of the year. For

any given day, means that the cost depends

on the temperature, which in turns depends on the day of the
year. Thus, we can evaluate the cost function at the temperature

. For example, we could evaluate to determine the

average daily temperature on the 5th day of the year. Then, we could
evaluate the cost function at that temperature. We would write

.

By combining these two relationships into one function, we have
performed function composition, which is the focus of this section.
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83. Combine functions using
algebraic operations

Function composition is only one way to combine existing
functions. Another way is to carry out the usual algebraic operations
on functions, such as addition, subtraction, multiplication and
division. We do this by performing the operations with the function
outputs, defining the result as the output of our new function.

Suppose we need to add two columns of numbers that represent a
husband and wife’s separate annual incomes over a period of years,
with the result being their total household income. We want to
do this for every year, adding only that year’s incomes and then
collecting all the data in a new column. If is the wife’s income

and is the husband’s income in year , and we want to

represent the total income, then we can define a new function.

If this holds true for every year, then we can focus on the relation
between the functions without reference to a year and write

Just as for this sum of two functions, we can define difference,
product, and ratio functions for any pair of functions that have
the same kinds of inputs (not necessarily numbers) and also the
same kinds of outputs (which do have to be numbers so that the
usual operations of algebra can apply to them, and which also must
have the same units or no units when we add and subtract). In this
way, we can think of adding, subtracting, multiplying, and dividing
functions.

For two functions and with real number outputs,
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we define new functions , and by the

relations

Example 1: Performing Algebraic
Operations on Functions

Find and simplify the functions and

, given and

. Are they the same function?
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Solution

Begin by writing the general form, and then substitute
the given functions.

No, the functions are not the same.

Note: For

, the condition is necessary because when
, the denominator is equal to 0, which makes the

function undefined.
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Try It 1

Find and simplify the functions and

.

Are they the same function?

Solution
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84. Create a new function by
composition of functions

Performing algebraic operations on functions combines them into
a new function, but we can also create functions by composing
functions. When we wanted to compute a heating cost from a day
of the year, we created a new function that takes a day as input and
yields a cost as output. The process of combining functions so that
the output of one function becomes the input of another is known
as a composition of functions. The resulting function is known as a
composite function. We represent this combination by the following
notation:

We read the left-hand side as composed with at
and the right-hand side as of of The two sides of the
equation have the same mathematical meaning and are equal. The
open circle symbol is called the composition operator. We use
this operator mainly when we wish to emphasize the relationship
between the functions themselves without referring to any
particular input value. Composition is a binary operation that takes
two functions and forms a new function, much as addition or
multiplication takes two numbers and gives a new number.
However, it is important not to confuse function composition with
multiplication because, as we learned above, in most cases

.

It is also important to understand the order of operations in
evaluating a composite function. We follow the usual convention
with parentheses by starting with the innermost parentheses first,
and then working to the outside. In the equation above, the function

takes the input first and yields an output . Then the
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function takes as an input and yields an output

.

Figure 2

In general, and are different functions. In other

words, in many cases for all . We will

also see that sometimes two functions can be composed only in one
specific order.

For example, if and , then

but

These expressions are not equal for all values of , so the two
functions are not equal. It is irrelevant that the expressions happen

to be equal for the single input value .

Note that the range of the inside function (the first function to be
evaluated) needs to be within the domain of the outside function.
Less formally, the composition has to make sense in terms of inputs
and outputs.
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A General Note: Composition of
Functions

When the output of one function is used as the input
of another, we call the entire operation a composition of
functions. For any input and functions and , this
action defines a composite function, which we write as

such that

The domain of the composite function is all

such that is in the domain of and is in the

domain of .

It is important to realize that the product of functions
is not the same as the function composition

, because, in general,

.

Example 2: Determining whether
Composition of Functions is
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Commutative

Using the functions provided, find and

. Determine whether the composition of the

functions is commutative.

Solution

Let’s begin by substituting into .

Now we can substitute into .

We find that , so the

operation of function composition is not commutative.
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Example 3: Interpreting Composite
Functions

The function gives the number of calories

burned completing sit-ups, and gives the

number of sit-ups a person can complete in minutes.
Interpret .

Solution

The inside expression in the composition is .

Because the input to the s-function is time,
represents 3 minutes, and is the number of sit-

ups completed in 3 minutes.

Using as the input to the function gives

us the number of calories burned during the number of
sit-ups that can be completed in 3 minutes, or simply
the number of calories burned in 3 minutes (by doing
sit-ups).
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Example 4: Investigating the Order of
Function Composition

Suppose gives miles that can be driven in

hours and gives the gallons of gas used in driving

miles. Which of these expressions is meaningful:
or

Solution

The function is a function whose output

is the number of miles driven corresponding to the
number of hours driven.

The function is a function whose output is the

number of gallons used corresponding to the number of
miles driven. This means:

The expression takes miles as the input and a
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number of gallons as the output. The function

requires a number of hours as the input. Trying to input
a number of gallons does not make sense. The
expression is meaningless.

The expression takes hours as input and a

number of miles driven as the output. The function
requires a number of miles as the input. Using

(miles driven) as an input value for , where

gallons of gas depends on miles driven, does make
sense. The expression makes sense, and will

yield the number of gallons of gas used, , driving a
certain number of miles, , in hours.

Q & A

Are there any situations where and

would both be meaningful or useful

expressions?

Yes. For many pure mathematical functions, both
compositions make sense, even though they usually
produce different new functions. In real-world problems,
functions whose inputs and outputs have the same units
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also may give compositions that are meaningful in either
order.

Try It 2

The gravitational force on a planet a distance r from the
sun is given by the function . The acceleration of a

planet subjected to any force is given by the function
. Form a meaningful composition of these two

functions, and explain what it means.

Solution
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85. Evaluate composite
functions

Once we compose a new function from two existing functions,
we need to be able to evaluate it for any input in its domain. We
will do this with specific numerical inputs for functions expressed
as tables, graphs, and formulas and with variables as inputs to
functions expressed as formulas. In each case, we evaluate the inner
function using the starting input and then use the inner function’s
output as the input for the outer function.

Evaluating Composite Functions Using Tables

When working with functions given as tables, we read input and
output values from the table entries and always work from the
inside to the outside. We evaluate the inside function first and then
use the output of the inside function as the input to the outside
function.

Example 5: Using a Table to Evaluate a
Composite Function

Using the table below, evaluate and

.
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1 6 3

2 8 5

3 3 2

4 1 7

Solution

To evaluate , we start from the inside with

the input value 3. We then evaluate the inside
expression using the table that defines the

function . We can then use that result

as the input to the function , so is replaced by 2

and we get . Then, using the table that defines the

function , we find that .

To evaluate , we first evaluate the inside

expression using the first table: .
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Then, using the table for we

can evaluate

The table below shows the composite functions
and as tables.

3 2 8 3 2

Try It 3

Using the table below, evaluate and

.

1 6 3

2 8 5

3 3 2

4 1 7

Solution
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Evaluating Composite Functions Using Graphs

When we are given individual functions as graphs, the procedure
for evaluating composite functions is similar to the process we use
for evaluating tables. We read the input and output values, but this
time, from the and axes of the graphs.

How To: Given a composite function
and graphs of its individual functions,
evaluate it using the information
provided by the graphs.

1. Locate the given input to the inner function on
the axis of its graph.

2. Read off the output of the inner function from
the axis of its graph.

3. Locate the inner function output on the axis
of the graph of the outer function.

4. Read the output of the outer function from the
axis of its graph. This is the output of the

composite function.
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Example 6: Using a Graph to Evaluate a
Composite Function

Using the graphs in Figure 3, evaluate .

Figure 3
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Solution

Figure 4

To evaluate , we start with the inside

evaluation.

We evaluate using the graph of , finding

the input of 1 on the axis and finding the output
value of the graph at that input. Here, . We

use this value as the input to the function .

We can then evaluate the composite function by
looking to the graph of , finding the input of 3 on

the axis and reading the output value of the graph at
this input. Here, , so .
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Analysis of the Solution

Figure 5 shows how we can mark the graphs with arrows to trace
the path from the input value to the output value.

Figure 5

Try It 4

Using Figure 6, evaluate .
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Figure 6

Solution

Evaluating Composite Functions Using Formulas

When evaluating a composite function where we have either
created or been given formulas, the rule of working from the inside
out remains the same. The input value to the outer function will be
the output of the inner function, which may be a numerical value, a
variable name, or a more complicated expression.

While we can compose the functions for each individual input
value, it is sometimes helpful to find a single formula that will
calculate the result of a composition . To do this, we

will extend our idea of function evaluation. Recall that, when we
evaluate a function like , we substitute the value

inside the parentheses into the formula wherever we see the input
variable.
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How To: Given a formula for a
composite function, evaluate the function.

1. Evaluate the inside function using the input
value or variable provided.

2. Use the resulting output as the input to the
outside function.

Example 7: Evaluating a Composition of
Functions Expressed as Formulas with a
Numerical Input

Given and ,

evaluate .
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Solution

Because the inside expression is , we start by

evaluating at 1.

Then , so we evaluate at

an input of 5.

Analysis of the Solution

It makes no difference what the input variables and were called
in this problem because we evaluated for specific numerical values.
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Try It 5

Given and ,

evaluate

A)

B)

Solution
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86. Find the domain of a
composite function

As we discussed previously, the domain of a composite function
such as is dependent on the domain of and the domain of

. It is important to know when we can apply a composite function
and when we cannot, that is, to know the domain of a function such
as . Let us assume we know the domains of the functions
and separately. If we write the composite function for an input

as , we can see right away that must be a member

of the domain of in order for the expression to be meaningful,
because otherwise we cannot complete the inner function
evaluation. However, we also see that must be a member

of the domain of , otherwise the second function evaluation in

cannot be completed, and the expression is still

undefined. Thus the domain of consists of only those inputs
in the domain of that produce outputs from belonging to the
domain of . Note that the domain of composed with is the set

of all such that is in the domain of and is in the domain

of .
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A General Note: Domain of a
Composite Function

The domain of a composite function is the

set of those inputs in the domain of for which
is in the domain of .

How To: Given a function composition
, determine its domain.

1. Find the domain of g.
2. Find the domain of f.
3. Find those inputs, x, in the domain of g for

which g(x) is in the domain of f. That is, exclude
those inputs, x, from the domain of g for which
g(x) is not in the domain of f. The resulting set is
the domain of

.
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Example 8: Finding the Domain of a
Composite Function

Find the domain of

Solution

The domain of

consists of all real numbers except

, since that input value would cause us to divide by 0.
Likewise, the domain of consists of all real numbers
except 1. So we need to exclude from the domain of

that value of for which

.
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So the domain of is the set of all real numbers
except

and . This means that

We can write this in interval notation as

Example 9: Finding the Domain of a
Composite Function Involving Radicals

Find the domain of

Solution

Because we cannot take the square root of a negative
number, the domain of is
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. Now we check the domain of the composite function

The domain of this function is

. To find the domain of

, we ask ourselves if there are any further restrictions
offered by the domain of the composite function. The
answer is no, since

is a proper subset of the domain of

. This means the domain of

is the same as the domain of , namely,

.

Analysis of the Solution

This example shows that knowledge of the range of functions
(specifically the inner function) can also be helpful in finding the
domain of a composite function. It also shows that the domain of

can contain values that are not in the domain of , though
they must be in the domain of .
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Try It 6

Find the domain of

Solution
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87. Decompose a composite
function into its component
functions

In some cases, it is necessary to decompose a complicated function.
In other words, we can write it as a composition of two simpler
functions. There may be more than one way to decompose a
composite function, so we may choose the decomposition that
appears to be most expedient.

Example 10: Decomposing a Function

Write

as the composition of two functions.

Solution

We are looking for two functions,
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and

, so

. To do this, we look for a function inside a function in
the formula for

. As one possibility, we might notice that the expression

is the inside of the square root. We could then
decompose the function as

We can check our answer by recomposing the
functions.

Try It 7

Write

as the composition of two functions.

Solution
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88. Key Concepts & Glossary

Key Equation

Composite
function

Key Concepts

• We can perform algebraic operations on functions.
• When functions are combined, the output of the first (inner)

function becomes the input of the second (outer) function.
• The function produced by combining two functions is a

composite function.
• The order of function composition must be considered when

interpreting the meaning of composite functions.
• A composite function can be evaluated by evaluating the inner

function using the given input value and then evaluating the
outer function taking as its input the output of the inner
function.

• A composite function can be evaluated from a table.
• A composite function can be evaluated from a graph.
• A composite function can be evaluated from a formula.
• The domain of a composite function consists of those inputs in

the domain of the inner function that correspond to outputs of
the inner function that are in the domain of the outer function.

• Just as functions can be combined to form a composite
function, composite functions can be decomposed into simpler
functions.

• Functions can often be decomposed in more than one way.
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Glossary

composite function
the new function formed by function composition, when the
output of one function is used as the input of another
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89. Section Exercises

1. How does one find the domain of the quotient of two functions,

2. What is the composition of two functions,
3. If the order is reversed when composing two functions, can the

result ever be the same as the answer in the original order of the
composition? If yes, give an example. If no, explain why not.

4. How do you find the domain for the composition of two
functions,

5. Given and , find

and

. Determine the domain for each function in interval notation.
6. Given and , find

, and

. Determine the domain for each function in interval notation.
7. Given and

, find and

. Determine the domain for each function in interval notation.
8. Given

and

, find and
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. Determine the domain for each function in interval notation.
9. Given

and

, find

and

. Determine the domain for each function in interval notation.
10. Given

and

, find

. Determine the domain of the function in interval notation.
11. Given

and

, find the following:

For the following exercises, use each pair of functions to find
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and

. Simplify your answers.
12.

13.

14.

15.

16.

17.

For the following exercises, use each set of functions to find

. Simplify your answers.
18. , , and

19. , , and

20. Given and

, find the following:

the domain of

in interval notation
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the domain of

21. Given

and

, find the following:
a.

b. the domain of

in interval notation
22. Given the functions

, find the following:
a.

b.

23. Given functions

and

, state the domain of each of the following functions using interval
notation:
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24. Given functions

and

, state the domain of each of the following functions using interval
notation.

25. For

and

, write the domain of

in interval notation.
For the following exercises, find functions

and

so the given function can be expressed as

.
26.

27.

28.
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29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

For the following exercises, use the graphs of and to evaluate
the expressions.
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42.

43.

44.

45.

46.

47.
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48.

49.

For the following exercises, use graphs of , and

, to evaluate the expressions.
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50.

51.

52.

53.

54.

55.

56.
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57.

For the following exercises, use the function values for to
evaluate each expression.

0 7 9

1 6 5

2 5 6

3 8 2

4 4 1

5 0 8

6 2 7

7 1 3

8 9 4

9 3 0

58.

59.

60.

61.

62.

63.

64.

65.
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For the following exercises, use the function values for to
evaluate the expressions.

-3 11 -8

-2 9 -3

-1 7 0

0 5 1

1 3 0

2 1 -3

3 -1 -8

66.

67.

68.

69.

70.

71.

For the following exercises, use each pair of functions to find
and .

72.

73.
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74.

75.

For the following exercises, use the functions

and

to evaluate or find the composite function as indicated.

76.

77.

78.

79.

For the following exercises, use and

.

80. Find and . Compare the two

answers.

81. Find and .

82. What is the domain of

83. What is the domain of

84. Let
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.

a. Find .

b. Is for any function the same result

as the answer to part (a) for any function? Explain.

For the following exercises, let ,

, and .

85. True or False: .

86. True or False: .

For the following exercises, find the composition when
for all and .

87.

88.

89.

90. The function gives the number of items that will be

demanded when the price is . The production cost is the

cost of producing items. To determine the cost of production
when the price is $6, you would do which of the following?

a. Evaluate .

b. Evaluate .

c. Solve .

d. Solve .

91. The function gives the pain level on a scale of 0 to 10
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experienced by a patient with milligrams of a pain-reducing drug
in her system. The milligrams of the drug in the patient’s system
after minutes is modeled by . Which of the following would

you do in order to determine when the patient will be at a pain level
of 4?

a. Evaluate .

b. Evaluate .

c. Solve .

d. Solve .

92. A store offers customers a 30% discount on the price of
selected items. Then, the store takes off an additional 15% at the
cash register. Write a price function that computes the final

price of the item in terms of the original price . (Hint: Use function
composition to find your answer.)

93. A rain drop hitting a lake makes a circular ripple. If the radius,
in inches, grows as a function of time in minutes according to

, find the area of the ripple as a function of

time. Find the area of the ripple at .

94. A forest fire leaves behind an area of grass burned in an
expanding circular pattern. If the radius of the circle of burning
grass is increasing with time according to the formula

, express the area burned as a function of time,

(minutes).

95. Use the function you found in the previous exercise to find the
total area burned after 5 minutes.

96. The radius , in inches, of a spherical balloon is related to the
volume, , by
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. Air is pumped into the balloon, so the volume after seconds is
given by .

a. Find the composite function .

b. Find the exact time when the radius reaches 10
inches.

97. The number of bacteria in a refrigerated food product is given
by , , where

is the temperature of the food. When the food is removed from
the refrigerator, the temperature is given by ,

where is the time in hours.
a. Find the composite function .

b. Find the time (round to two decimal places) when
the bacteria count reaches 6752.
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PART XIII

TRANSFORMATION OF
FUNCTIONS
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90. Introduction to
Transformation of Functions

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Graph functions using vertical and horizontal
shifts.

• Graph functions using reflections about the -axis
and the -axis.

• Determine whether a function is even, odd, or
neither from its graph.

• Graph functions using compressions and stretches.
• Combine transformations.
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Figure 1. (credit: “Misko”/Flickr)

We all know that a flat mirror enables us to see an accurate image
of ourselves and whatever is behind us. When we tilt the mirror,
the images we see may shift horizontally or vertically. But what
happens when we bend a flexible mirror? Like a carnival funhouse
mirror, it presents us with a distorted image of ourselves, stretched
or compressed horizontally or vertically. In a similar way, we can
distort or transform mathematical functions to better adapt them to
describing objects or processes in the real world. In this section, we
will take a look at several kinds of transformations.
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91. Graph functions using
vertical and horizontal shifts

Often when given a problem, we try to model the scenario using
mathematics in the form of words, tables, graphs, and equations.
One method we can employ is to adapt the basic graphs of the
toolkit functions to build new models for a given scenario. There are
systematic ways to alter functions to construct appropriate models
for the problems we are trying to solve.

Identifying Vertical Shifts

One simple kind of transformation involves shifting the entire
graph of a function up, down, right, or left. The simplest shift is
a vertical shift, moving the graph up or down, because this
transformation involves adding a positive or negative constant to
the function. In other words, we add the same constant to the
output value of the function regardless of the input. For a function

, the function

is shifted vertically

units.
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Figure 2. Vertical shift by

of the cube root function

.
To help you visualize the concept of a vertical shift, consider that

. Therefore,

is equivalent to

. Every unit of is replaced by

, so the

value increases or decreases depending on the value of

. The result is a shift upward or downward.
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A General Note: Vertical Shift

Given a function

, a new function

, where is a constant, is a vertical shift of the function

. All the output values change by units. If is positive,
the graph will shift up. If is negative, the graph will
shift down.

Example 1: Adding a Constant to a
Function

To regulate temperature in a green building, airflow
vents near the roof open and close throughout the day.
Figure 2 shows the area of open vents (in square feet)
throughout the day in hours after midnight, . During
the summer, the facilities manager decides to try to
better regulate temperature by increasing the amount
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of open vents by 20 square feet throughout the day and
night. Sketch a graph of this new function.

Figure 3

Solution

We can sketch a graph of this new function by adding
20 to each of the output values of the original function.
This will have the effect of shifting the graph vertically
up, as shown in Figure 4.
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Figure 4

Notice that for each input value, the output value has
increased by 20, so if we call the new function ,

we could write

This notation tells us that, for any value of

can be found by evaluating the function at the same
input and then adding 20 to the result. This defines
as a transformation of the function , in this case a
vertical shift up 20 units. Notice that, with a vertical
shift, the input values stay the same and only the output
values change.
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0 8 10 17 19 24

0 0 220 220 0 0

20 20 240 240 20 20

How To: Given a tabular function,
create a new row to represent a vertical
shift.

1. Identify the output row or column.
2. Determine the magnitude of the shift.
3. Add the shift to the value in each output cell.

Add a positive value for up or a negative value for
down.

Example 2: Shifting a Tabular Function
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Vertically

A function

is given below. Create a table for the function

.

2 4 6 8

1 3 7 11

Solution

The formula

tells us that we can find the output values of by
subtracting 3 from the output values of . For example:

Subtracting 3 from each value, we can
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complete a table of values for

.

2 4 6 8

1 3 7 11

−2 0 4 8

Analysis of the Solution

As with the earlier vertical shift, notice the input values stay the
same and only the output values change.

The function

gives the height of a ball (in meters) thrown upward from the
ground after seconds. Suppose the ball was instead thrown from
the top of a 10-m building. Relate this new height function to

, and then find a formula for

.
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Identifying Horizontal Shifts

We just saw that the vertical shift is a change to the output, or
outside, of the function. We will now look at how changes to input,
on the inside of the function, change its graph and meaning. A shift
to the input results in a movement of the graph of the function left
or right in what is known as a horizontal shift.

Figure 5. Horizontal shift of the function

. Note that shifts the graph to the left, that is, towards
negative values of .

For example, if

, then

is a new function. Each input is reduced by 2 prior to squaring the
function. The result is that the graph is shifted 2 units to the right,
because we would need to increase the prior input by 2 units to
yield the same output value as given in .
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A General Note: Horizontal Shift

Given a function , a new function

, where is a constant, is a horizontal shift of the
function . If is positive, the graph will shift right. If

is negative, the graph will shift left.

Example 3: Adding a Constant to an
Input

Returning to our building airflow example from
Example 2, suppose that in autumn the facilities
manager decides that the original venting plan starts
too late, and wants to begin the entire venting program
2 hours earlier. Sketch a graph of the new function.
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Solution

We can set to be the original program and

to be the revised program.

In the new graph, at each time, the airflow is the same
as the original function was 2 hours later. For
example, in the original function , the airflow starts to
change at 8 a.m., whereas for the function , the
airflow starts to change at 6 a.m. The comparable
function values are

. Notice also that the vents first opened to

at 10 a.m. under the original plan, while under the new
plan the vents reach

at 8 a.m., so

.
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Figure 6

In both cases, we see that, because

starts 2 hours sooner, . That means that the
same output values are reached when

.

Analysis of the Solution

Note that

has the effect of shifting the graph to the left.
Horizontal changes or “inside changes” affect the domain of a

function (the input) instead of the range and often seem
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counterintuitive. The new function

uses the same outputs as

, but matches those outputs to inputs 2 hours earlier than those of

. Said another way, we must add 2 hours to the input of to
find the corresponding output for

.

How To: Given a tabular function,
create a new row to represent a horizontal
shift.

1. Identify the input row or column.
2. Determine the magnitude of the shift.
3. Add the shift to the value in each input cell.

Graph functions using vertical and horizontal shifts | 611



Example 4: Shifting a Tabular Function
Horizontally

A function

is given below. Create a table for the function

.

2 4 6 8

1 3 7 11

Solution

The formula

tells us that the output values of are the same as the
output value of when the input value is 3 less than the
original value. For example, we know that

. To get the same output from the function , we will
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need an input value that is 3 larger. We input a value
that is 3 larger for because the function takes 3

away before evaluating the function .

We continue with the other values to create this table.

5 7 9 11

2 4 6 8

1 3 7 11

1 3 7 11

The result is that the function has been shifted

to the right by 3. Notice the output values for

remain the same as the output values for , but the

corresponding input values, , have shifted to the right
by 3. Specifically, 2 shifted to 5, 4 shifted to 7, 6 shifted
to 9, and 8 shifted to 11.

Analysis of the Solution

The graph in Figure 7 represents both of the functions. We can see
the horizontal shift in each point.
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Figure 7

Example 5: Identifying a Horizontal
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Shift of a Toolkit Function

This graph represents a transformation of the toolkit
function

. Relate this new function to , and then

find a formula for .

Figure 8
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Solution

Notice that the graph is identical in shape to the
function, but the x-values are shifted to

the right 2 units. The vertex used to be at (0,0), but now
the vertex is at (2,0). The graph is the basic quadratic
function shifted 2 units to the right, so

Notice how we must input the value to get
the output value ; the x-values must be 2 units
larger because of the shift to the right by 2 units. We
can then use the definition of the function to

write a formula for by evaluating .

Analysis of the Solution

To determine whether the shift is or , consider a single
reference point on the graph. For a quadratic, looking at the vertex
point is convenient. In the original function, . In our

shifted function, . To obtain the output value of 0 from

the function , we need to decide whether a plus or a minus sign
will work to satisfy
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. For this to work, we will need to subtract 2 units from our input
values.

Example 6: Interpreting Horizontal
versus Vertical Shifts

The function gives the number of gallons of

gas required to drive miles. Interpret

and

.

Solution

can be interpreted as adding 10 to the

output, gallons. This is the gas required to drive
miles, plus another 10 gallons of gas. The graph would
indicate a vertical shift.

can be interpreted as adding 10 to the

input, miles. So this is the number of gallons of gas
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required to drive 10 miles more than miles. The
graph would indicate a horizontal shift.

Try It 1

Given the function

, graph the original function

and the transformation

on the same axes. Is this a horizontal or a vertical shift?
Which way is the graph shifted and by how many units?

Solution
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92. Graph functions using
reflections about the x-axis
and the y-axis

Another transformation that can be applied to a function is a
reflection over the x– or y-axis. A vertical reflection reflects a
graph vertically across the x-axis, while a horizontal reflection
reflects a graph horizontally across the y-axis. The reflections are
shown in Figure 9.

Figure 9. Vertical and horizontal reflections of a function.
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Notice that the vertical reflection produces a new graph that is a
mirror image of the base or original graph about the x-axis. The
horizontal reflection produces a new graph that is a mirror image of
the base or original graph about the y-axis.

A General Note: Reflections

Given a function

, a new function

is a vertical reflection of the function

, sometimes called a reflection about (or over, or
through) the x-axis.

Given a function

, a new function

is a horizontal reflection of the function

, sometimes called a reflection about the y-axis.
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How To: Given a function, reflect the
graph both vertically and horizontally.

1. Multiply all outputs by –1 for a vertical
reflection. The new graph is a reflection of the
original graph about the x-axis.

2. Multiply all inputs by –1 for a horizontal
reflection. The new graph is a reflection of the
original graph about the y-axis.

Example 7: Reflecting a Graph
Horizontally and Vertically

Reflect the graph of

(a) vertically and (b) horizontally.
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Solution

a. Reflecting the graph vertically means that each
output value will be reflected over the horizontal t-axis
as shown in Figure 10.

Figure 10. Vertical reflection of the square root function

Because each output value is the opposite of the
original output value, we can write

Notice that this is an outside change, or vertical shift,
that affects the output

values, so the negative sign belongs outside of the
function.

b.

Reflecting horizontally means that each input value
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will be reflected over the vertical axis as shown in Figure
11.

Figure 11. Horizontal reflection of the square root function

Because each input value is the opposite of the
original input value, we can write

Notice that this is an inside change or horizontal
change that affects the input values, so the negative sign
is on the inside of the function.

Note that these transformations can affect the
domain and range of the functions. While the original
square root function has domain

and range

, the vertical reflection gives the

function the range

and the horizontal reflection gives the
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function the domain

.

Try It 2

Reflect the graph of

(a) vertically and (b) horizontally.

Solution

Example 8: Reflecting a Tabular
Function Horizontally and Vertically

A function

is given. Create a table for the functions below.

1.
2.
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2 4 6 8

1 3 7 11

Solution

1. For

, the negative sign outside the function indicates a
vertical reflection, so the x-values stay the same
and each output value will be the opposite of the
original output value.

2 4 6 8

–1 –3 –7 –11

2. For

, the negative sign inside the function indicates a
horizontal reflection, so each input value will be
the opposite of the original input value and the

values stay the same as the
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values.

−2 −4 −6 −8

1 3 7 11

Try It 3

−2 0 2 4

5 10 15 20

Using the function

given in the table above, create a table for the functions
below.

a.

b.

Solution
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93. Determine whether a
function is even, odd, or
neither from its graph

Some functions exhibit symmetry so that reflections result in the
original graph. For example, horizontally reflecting the toolkit
functions

or

will result in the original graph. We say that these types of graphs
are symmetric about the y-axis. Functions whose graphs are
symmetric about the y-axis are called even functions.

If the graphs of

or

were reflected over both axes, the result would be the original
graph.

Figure 12. (a) The cubic toolkit function (b) Horizontal reflection of the cubic
toolkit function (c) Horizontal and vertical reflections reproduce the original
cubic function.

Determine whether a function is
even, odd, or neither from its



We say that these graphs are symmetric about the origin. A function
with a graph that is symmetric about the origin is called an odd
function.

Note: A function can be neither even nor odd if it does not exhibit
either symmetry. For example,

is neither even nor odd. Also, the only function that is both even
and odd is the constant function

.

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=135
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A General Note: Even and Odd
Functions

A function is called an even function if for every input

The graph of an even function is symmetric about the

axis.

A function is called an odd function if for every input

The graph of an odd function is symmetric about the
origin.

How To: Given the formula for a
function, determine if the function is
even, odd, or neither.

1. Determine whether the function satisfies
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. If it does, it is even.
2. Determine whether the function satisfies

. If it does, it is odd.
3. If the function does not satisfy either rule, it is

neither even nor odd.

Example 9: Determining whether a
Function Is Even, Odd, or Neither

Is the function

even, odd, or neither?

Solution

Without looking at a graph, we can determine
whether the function is even or odd by finding formulas
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for the reflections and determining if they return us to
the original function. Let’s begin with the rule for even
functions.

This does not return us to the original function, so
this function is not even. We can now test the rule for
odd functions.

Because

, this is an odd function.

Analysis of the Solution

Consider the graph of

. Notice that the graph is symmetric about the origin. For every
point

on the graph, the corresponding point

is also on the graph. For example, (1, 3) is on the graph of

, and the corresponding point

is also on the graph.
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Figure 13

Try It 4

Is the function

even, odd, or neither?

Solution
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94. Graph functions using
compressions and stretches

Adding a constant to the inputs or outputs of a function changed
the position of a graph with respect to the axes, but it did not affect
the shape of a graph. We now explore the effects of multiplying the
inputs or outputs by some quantity.

We can transform the inside (input values) of a function or we can
transform the outside (output values) of a function. Each change has
a specific effect that can be seen graphically.

Vertical Stretches and Compressions

When we multiply a function by a positive constant, we get a
function whose graph is stretched or compressed vertically in
relation to the graph of the original function. If the constant is
greater than 1, we get a vertical stretch; if the constant is between
0 and 1, we get a vertical compression. The graph below shows a
function multiplied by constant factors 2 and 0.5 and the resulting
vertical stretch and compression.
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Figure 14. Vertical stretch and compression

A General Note: Vertical Stretches and
Compressions

Given a function

, a new function

, where

is a constant, is a vertical stretch or vertical
compression of the function
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.

• If

1\\" title="a>1\\" class="latex mathjax">, then the
graph will be stretched.

• If 0 < a < 1, then the graph will be compressed.
• If

, then there will be combination of a vertical
stretch or compression with a vertical reflection.

How To: Given a function, graph its
vertical stretch.

1. Identify the value of

.
2. Multiply all range values by

.

3. If

1\\" title="a>1\\" class="latex mathjax">, the graph
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is stretched by a factor of

.

If

, the graph is compressed by a factor of

.

If

, the graph is either stretched or compressed and
also reflected about the x-axis.
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Example 10: Graphing a Vertical Stretch

Figure 15

A function

models the population of fruit flies.

A scientist is comparing this population to another
population,

, whose growth follows the same pattern, but is twice as
large. Sketch a graph of this population.

Graph functions using compressions and stretches | 637



Solution

Because the population is always twice as large, the
new population’s output values are always twice the
original function’s output values.

If we choose four reference points, (0, 1), (3, 3), (6, 2)
and (7, 0) we will multiply all of the outputs by 2.

The following shows where the new points for the
new graph will be located.
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Figure 16

Symbolically, the relationship is written as

This means that for any input

, the value of the function

is twice the value of the function

. Notice that the effect on the graph is a vertical
stretching of the graph, where every point doubles its
distance from the horizontal axis. The input values,

, stay the same while the output values are twice as
large as before.
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How To: Given a tabular function and
assuming that the transformation is a
vertical stretch or compression, create a
table for a vertical compression.

1. Determine the value of

.
2. Multiply all of the output values by

.

Example 11: Finding a Vertical
Compression of a Tabular Function

A function

is given in the table below. Create a table for the
function

.
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2 4 6 8

1 3 7 11

Solution

The formula

tells us that the output values of

are half of the output values of

with the same inputs. For example, we know that

. Then

We do the same for the other values to produce this
table.
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Analysis of the Solution

The result is that the function

has been compressed vertically by

. Each output value is divided in half, so the graph is half the original
height.

Try It 5

A function

is given below. Create a table for the function

.

2 4 6 8

1
2

1
6

2
0 0

Solution
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Example 12: Recognizing a Vertical
Stretch

Figure 17

The graph is a transformation of the toolkit function

. Relate this new function

to
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, and then find a formula for

.

Solution

When trying to determine a vertical stretch or shift, it
is helpful to look for a point on the graph that is
relatively clear. In this graph, it appears that

. With the basic cubic function at the same input,

. Based on that, it appears that the outputs of

are

the outputs of the function

because

. From this we can fairly safely conclude that

.

We can write a formula for
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by using the definition of the function

.

Try It 6

Write the formula for the function that we get when we
stretch the identity toolkit function by a factor of 3, and
then shift it down by 2 units.

Solution
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Horizontal Stretches and Compressions

Figure 18

Now we consider changes to the inside of a function. When we
multiply a function’s input by a positive constant, we get a function
whose graph is stretched or compressed horizontally in relation to
the graph of the original function. If the constant is between 0 and
1, we get a horizontal stretch; if the constant is greater than 1, we
get a horizontal compression of the function.

Given a function
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, the form results in a horizontal stretch or

compression. Consider the function

. The graph of

is a horizontal stretch of the graph of the function

by a factor of 2. The graph of

is a horizontal compression of the graph of the function

by a factor of 2.

A General Note: Horizontal Stretches
and Compressions

Given a function

, a new function

, where

is a constant, is a horizontal stretch or horizontal
compression of the function

.
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• If

1\\" title="b>1\\" class="latex mathjax">, then the
graph will be compressed by

.
• If

, then the graph will be stretched by

.
• If

, then there will be combination of a horizontal
stretch or compression with a horizontal
reflection.

How To: Given a description of a
function, sketch a horizontal compression
or stretch.

1. Write a formula to represent the function.
2. Set
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where

1\\" title="b>1\\" class="latex mathjax"> for a
compression or

for a stretch.

Example 13: Graphing a Horizontal
Compression

Suppose a scientist is comparing a population of fruit
flies to a population that progresses through its lifespan
twice as fast as the original population. In other words,
this new population,

, will progress in 1 hour the same amount as the original
population does in 2 hours, and in 2 hours, it will
progress as much as the original population does in 4
hours. Sketch a graph of this population.
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Solution

Symbolically, we could write

See below for a graphical comparison of the original
population and the compressed population.

Figure 19. (a) Original population graph (b) Compressed
population graph

Analysis of the Solution

Note that the effect on the graph is a horizontal compression where
all input values are half of their original distance from the vertical
axis.
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Example 14: Finding a Horizontal
Stretch for a Tabular Function

A function

is given below. Create a table for the function

.

2 4 6 8

1 3 7 11

Solution

The formula

tells us that the output values for

are the same as the output values for the function
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at an input half the size. Notice that we do not have
enough information to determine

because

, and we do not have a value for

in our table. Our input values to

will need to be twice as large to get inputs for

that we can evaluate. For example, we can determine

We do the same for the other values to produce the
table below.

4 8 12 16

1 3 7 11

Figure 20
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This figure shows the graphs of both of these sets of
points.

Analysis of the Solution

Because each input value has been doubled, the result is that the
function

has been stretched horizontally by a factor of 2.

Example 15: Recognizing a Horizontal
Compression on a Graph

Relate the function

to

in Figure 21.
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Figure 21

Solution

The graph of

looks like the graph of

horizontally compressed. Because

ends at
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and

ends at

, we can see that the

values have been compressed by

, because

. We might also notice that

and

. Either way, we can describe this relationship as

. This is a horizontal compression by

.

Analysis of the Solution

Notice that the coefficient needed for a horizontal stretch or
compression is the reciprocal of the stretch or compression. So
to stretch the graph horizontally by a scale factor of 4, we need
a coefficient of

in our function:
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. This means that the input values must be four times larger to
produce the same result, requiring the input to be larger, causing
the horizontal stretching.

Try It 7

Write a formula for the toolkit square root function
horizontally stretched by a factor of 3.

Solution
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95. Combine vertical and
horizontal shifts

Now that we have two transformations, we can combine them
together. Vertical shifts are outside changes that affect the output (

) axis values and shift the function up or down. Horizontal shifts
are inside changes that affect the input (

) axis values and shift the function left or right. Combining the two
types of shifts will cause the graph of a function to shift up or down
and right or left.

How To: Given a function and both a
vertical and a horizontal shift, sketch the
graph.

1. Identify the vertical and horizontal shifts from
the formula.

2. The vertical shift results from a constant added
to the output. Move the graph up for a positive
constant and down for a negative constant.

3. The horizontal shift results from a constant
added to the input. Move the graph left for a
positive constant and right for a negative
constant.
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4. Apply the shifts to the graph in either order.

Example 16: Graphing Combined
Vertical and Horizontal Shifts

Given

, sketch a graph of

.

The function

is our toolkit absolute value function. We know that this
graph has a V shape, with the point at the origin. The
graph of

has transformed

in two ways:
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is a change on the inside of the function, giving a
horizontal shift left by 1, and the subtraction by 3 in

is a change to the outside of the function, giving a
vertical shift down by 3. The transformation of the
graph is illustrated in Figure 22.

Let us follow one point of the graph of

.

• The point

is transformed first by shifting left 1 unit:

• The point

is transformed next by shifting down 3 units:
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Figure 22

Figure 23 is the graph of

.
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Figure 23

Try It 8

Given

, sketch a graph of

.

Solution
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Example 17: Identifying Combined
Vertical and Horizontal Shifts

Write a formula for the graph shown in Figure 24,
which is a transformation of the toolkit square root
function.

Figure 24
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Solution

The graph of the toolkit function starts at the origin,
so this graph has been shifted 1 to the right and up 2. In
function notation, we could write that as

Using the formula for the square root function, we
can write

Analysis of the Solution

Note that this transformation has changed the domain and range
of the function. This new graph has domain

and range

.

Try It 9

Write a formula for a transformation of the toolkit
reciprocal function
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that shifts the function’s graph one unit to the right and
one unit up.

Solution

Example 18: Applying a Learning Model
Equation

A common model for learning has an equation similar
to

, where

is the percentage of mastery that can be achieved after

practice sessions. This is a transformation of the
function

shown in Figure 25. Sketch a graph of

.
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Figure 25

Solution

This equation combines three transformations into
one equation.
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• A horizontal reflection:

• A vertical reflection:

• A vertical shift:

We can sketch a graph by applying these
transformations one at a time to the original function.
Let us follow two points through each of the three
transformations. We will choose the points (0, 1) and (1,
2).

1. First, we apply a horizontal reflection: (0, 1) (–1,
2).

2. Then, we apply a vertical reflection: (0, −1) (1, –2).
3. Finally, we apply a vertical shift: (0, 0) (1, 1).

This means that the original points, (0,1) and (1,2)
become (0,0) and (1,1) after we apply the
transformations.

In Figure 26, the first graph results from a horizontal
reflection. The second results from a vertical reflection.
The third results from a vertical shift up 1 unit.
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Figure 26

Analysis of the Solution

As a model for learning, this function would be limited to a domain
of

, with corresponding range

.

Try It 10

Given the toolkit function
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, graph

and

. Take note of any surprising behavior for these functions.

Solution

Performing a Sequence of Transformations

When combining transformations, it is very important to consider
the order of the transformations. For example, vertically shifting
by 3 and then vertically stretching by 2 does not create the same
graph as vertically stretching by 2 and then vertically shifting by 3,
because when we shift first, both the original function and the shift
get stretched, while only the original function gets stretched when
we stretch first.

When we see an expression such as

, which transformation should we start with? The answer here
follows nicely from the order of operations. Given the output value
of

, we first multiply by 2, causing the vertical stretch, and then add
3, causing the vertical shift. In other words, multiplication before
addition.

Horizontal transformations are a little trickier to think about.
When we write
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, for example, we have to think about how the inputs to the function
relate to the inputs to the function

. Suppose we know

. What input to

would produce that output? In other words, what value of

will allow

We would need

. To solve for

, we would first subtract 3, resulting in a horizontal shift, and then
divide by 2, causing a horizontal compression.

This format ends up being very difficult to work with, because it is
usually much easier to horizontally stretch a graph before shifting.
We can work around this by factoring inside the function.

Let’s work through an example.

We can factor out a 2.

Now we can more clearly observe a horizontal shift to the left 2
units and a horizontal compression. Factoring in this way allows us
to horizontally stretch first and then shift horizontally.
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A General Note: Combining
Transformations

When combining vertical transformations written in
the form

, first vertically stretch by

and then vertically shift by

.

When combining horizontal transformations written
in the form

, first horizontally shift by and then horizontally
stretch by

.

When combining horizontal transformations written
in the form

, first horizontally stretch by and then horizontally

shift by

.

Horizontal and vertical transformations are
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independent. It does not matter whether horizontal or
vertical transformations are performed first.

Example 19: Finding a Triple
Transformation of a Tabular Function

Given the table below for the function

, create a table of values for the function

.

6 12 18 24

10 14 15 17

Solution

There are three steps to this transformation, and we
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will work from the inside out. Starting with the
horizontal transformations, is a horizontal

compression by

, which means we multiply each

value by

.

2 4 6 8

10 14 15 17

Looking now to the vertical transformations, we start
with the vertical stretch, which will multiply the output
values by 2. We apply this to the previous
transformation.

2 4 6 8

2
0

2
8

3
0

3
4

Finally, we can apply the vertical shift, which will add 1
to all the output values.

2 4 6 8

2
1

2
9

3
1

3
5
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Example 20: Finding a Triple
Transformation of a Graph

Use the graph of

to sketch a graph of

.

Figure 27
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Solution

To simplify, let’s start by factoring out the inside of
the function.

By factoring the inside, we can first horizontally
stretch by 2, as indicated by the

on the inside of the function. Remember that twice the
size of 0 is still 0, so the point (0,2) remains at (0,2) while
the point (2,0) will stretch to (4,0).
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Figure 28

Next, we horizontally shift left by 2 units, as indicated
by

.
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Figure 29

Last, we vertically shift down by 3 to complete our
sketch, as indicated by the

on the outside of the function.
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Figure 30
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96. Key Concepts & Glossary

Key Equations

Vertical shift (up for

)

Horizontal
shift

(right for

)

Vertical
reflection

Horizontal
reflection

Vertical
stretch

(

)

Vertical
compression

Horizontal
stretch

Horizontal
compression

(

)
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Key Concepts

• A function can be shifted vertically by adding a constant to the
output.

• A function can be shifted horizontally by adding a constant to
the input.

• Relating the shift to the context of a problem makes it possible
to compare and interpret vertical and horizontal shifts.

• Vertical and horizontal shifts are often combined.
• A vertical reflection reflects a graph about the

axis. A graph can be reflected vertically by multiplying the
output by –1.

• A horizontal reflection reflects a graph about the

axis. A graph can be reflected horizontally by multiplying the
input by –1.

• A graph can be reflected both vertically and horizontally. The
order in which the reflections are applied does not affect the
final graph.

• A function presented in tabular form can also be reflected by
multiplying the values in the input and output rows or columns
accordingly.

• A function presented as an equation can be reflected by
applying transformations one at a time.

• Even functions are symmetric about the

axis, whereas odd functions are symmetric about the origin.
• Even functions satisfy the condition

.
• Odd functions satisfy the condition

.
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• A function can be odd, even, or neither.
• A function can be compressed or stretched vertically by

multiplying the output by a constant.
• A function can be compressed or stretched horizontally by

multiplying the input by a constant.
• The order in which different transformations are applied does

affect the final function. Both vertical and horizontal
transformations must be applied in the order given. However, a
vertical transformation may be combined with a horizontal
transformation in any order.

Glossary

even function
a function whose graph is unchanged by horizontal reflection,

, and is symmetric about the

axis
horizontal compression

a transformation that compresses a function’s graph
horizontally, by multiplying the input by a constant

horizontal reflection
a transformation that reflects a function’s graph across the
y-axis by multiplying the input by

horizontal shift
a transformation that shifts a function’s graph left or right by
adding a positive or negative constant to the input

horizontal stretch
a transformation that stretches a function’s graph horizontally
by multiplying the input by a constant
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odd function
a function whose graph is unchanged by combined horizontal
and vertical reflection,

, and is symmetric about the origin
vertical compression

a function transformation that compresses the function’s
graph vertically by multiplying the output by a constant

vertical reflection
a transformation that reflects a function’s graph across the
x-axis by multiplying the output by

vertical shift
a transformation that shifts a function’s graph up or down by
adding a positive or negative constant to the output

vertical stretch
a transformation that stretches a function’s graph vertically by
multiplying the output by a constant
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97. Section Exercises

1. When examining the formula of a function that is the result of
multiple transformations, how can you tell a horizontal shift from a
vertical shift?

2. When examining the formula of a function that is the result of
multiple transformations, how can you tell a horizontal stretch from
a vertical stretch?

3. When examining the formula of a function that is the result of
multiple transformations, how can you tell a horizontal compression
from a vertical compression?

4. When examining the formula of a function that is the result of
multiple transformations, how can you tell a reflection with respect
to the x-axis from a reflection with respect to the y-axis?

5. How can you determine whether a function is odd or even from
the formula of the function?

6. Write a formula for the function obtained when the graph of

is shifted up 1 unit and to the left 2 units.
7. Write a formula for the function obtained when the graph of

is shifted down 3 units and to the right 1 unit.
8. Write a formula for the function obtained when the graph of

is shifted down 4 units and to the right 3 units.
9. Write a formula for the function obtained when the graph of

is shifted up 2 units and to the left 4 units.
For the following exercises, describe how the graph of the

function is a transformation of the graph of the original function

.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

For the following exercises, determine the interval(s) on which the
function is increasing and decreasing.

20.

21.

22.

23.

For the following exercises, use the graph of

to sketch a graph of each transformation of
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.

24.

25.

26.

For the following exercises, sketch a graph of the function as a
transformation of the graph of one of the toolkit functions.

27.

28.

29.

30.

31. Tabular representations for the functions
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, and are given below. Write

and

as transformations of

.

−2 −1 0 1

−2 −1 −3 1

−1 0 1 2

−2 −1 −3 1

−2 −1 0 1

−1 0 −2 2

32. Tabular representations for the functions

, and

are given below. Write

and

as transformations of

.

−2 −1 0 1

−1 −3 4 2
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−3 −2 −1 0

−1 −3 4 2

−2 −1 0 1

−2 −4 3 1

For the following exercises, write an equation for each graphed
function by using transformations of the graphs of one of the toolkit
functions.

33.

34.
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35.

36.
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37.

38.
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39.

40.
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For the following exercises, use the graphs of transformations of the
square root function to find a formula for each of the functions.

41.

42.

For the following exercises, use the graphs of the transformed
toolkit functions to write a formula for each of the resulting
functions.
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43.

44.
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45.

46.

For the following exercises, determine whether the function is odd,
even, or neither.

47.

48.

49.
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50.

51.

52.

For the following exercises, describe how the graph of each function
is a transformation of the graph of the original function .

53.

54.

55.

56.

57.

58.

59.

60.
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61.

62.

For the following exercises, write a formula for the function

that results when the graph of a given toolkit function is
transformed as described.

63. The graph of

is reflected over the

–axis and horizontally compressed by a factor of

.
64. The graph of

is reflected over the

-axis and horizontally stretched by a factor of 2.

65. The graph of

is vertically compressed by a factor of

, then shifted to the left 2 units and down 3 units.

66. The graph of

is vertically stretched by a factor of 8, then shifted to the right 4
units and up 2 units.
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67. The graph of

is vertically compressed by a factor of

, then shifted to the right 5 units and up 1 unit.

68. The graph of

is horizontally stretched by a factor of 3, then shifted to the left 4
units and down 3 units.

For the following exercises, describe how the formula is a
transformation of a toolkit function. Then sketch a graph of the
transformation.

69.

70.

71.

72.

73.

74.

75.
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76.

77.

For the following exercises, use the graph below to sketch the given
transformations.

78.

79.

80.

81.
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PART XIV

ABSOLUTE VALUE
FUNCTIONS
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98. Introduction to Absolute
Value Functions

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Graph an absolute value function.
• Solve an absolute value equation.
• Solve an absolute value inequality.

Figure 1. Distances in deep space can be measured in all directions. As such, it
is useful to consider distance in terms of absolute values. (credit:
“s58y”/Flickr)
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Until the 1920s, the so-called spiral nebulae were believed to be
clouds of dust and gas in our own galaxy, some tens of thousands of
light years away. Then, astronomer Edwin Hubble proved that these
objects are galaxies in their own right, at distances of millions of
light years. Today, astronomers can detect galaxies that are billions
of light years away. Distances in the universe can be measured in all
directions. As such, it is useful to consider distance as an absolute
value function. In this section, we will investigate absolute value
functions.

Understanding Absolute Value

Recall that in its basic form

, the absolute value function, is one of our toolkit functions. The
absolute value function is commonly thought of as providing the
distance the number is from zero on a number line. Algebraically, for
whatever the input value is, the output is the value without regard
to sign.

A General Note: Absolute Value
Function

The absolute value function can be defined as a
piecewise function
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Example 1: Determine a Number within
a Prescribed Distance

Describe all values

within or including a distance of 4 from the number 5.

Solution

Figure 2
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We want the distance between

and 5 to be less than or equal to 4. We can draw a
number line to represent the condition to be satisfied.

The distance from

to 5 can be represented using the absolute value as

. We want the values of

that satisfy the condition

.

Analysis of the Solution

Note that

And:

So

is equivalent to

.
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However, mathematicians generally prefer absolute value
notation.

Try It 1

Describe all values

within a distance of 3 from the number 2.

Solution

Example 2: Resistance of a Resistor

Electrical parts, such as resistors and capacitors,
come with specified values of their operating
parameters: resistance, capacitance, etc. However, due
to imprecision in manufacturing, the actual values of
these parameters vary somewhat from piece to piece,
even when they are supposed to be the same. The best
that manufacturers can do is to try to guarantee that
the variations will stay within a specified range, often

or .

Suppose we have a resistor rated at 680 ohms, .
Use the absolute value function to express the range of
possible values of the actual resistance.
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Solution

5% of 680 ohms is 34 ohms. The absolute value of the
difference between the actual and nominal resistance
should not exceed the stated variability, so, with the
resistance

in ohms,

Try It 2

Students who score within 20 points of 80 will pass a
test. Write this as a distance from 80 using absolute value
notation.

Solution
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99. Graph an absolute value
function

The most significant feature of the absolute value graph is the
corner point at which the graph changes direction. This point is
shown at the origin.

Figure 3

Figure 4 is the graph of

. The graph of

has been shifted right 3 units, vertically stretched by a factor of 2,
and shifted up 4 units. This means that the corner point is located at

for this transformed function.
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Figure 4
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Example 3: Writing an Equation for an
Absolute Value Function

Write an equation for the function graphed in Figure
5.

Figure 5
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Solution

The basic absolute value function changes direction at
the origin, so this graph has been shifted to the right 3
units and down 2 units from the basic toolkit function.

Figure 6

We also notice that the graph appears vertically
stretched, because the width of the final graph on a
horizontal line is not equal to 2 times the vertical
distance from the corner to this line, as it would be for
an unstretched absolute value function. Instead, the
width is equal to 1 times the vertical distance.
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Figure 7

From this information we can write the equation

Analysis of the Solution

Note that these equations are algebraically equivalent—the stretch
for an absolute value function can be written interchangeably as a
vertical or horizontal stretch or compression.
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Q & A

If we couldn’t observe the stretch of the function
from the graphs, could we algebraically determine it?

Yes. If we are unable to determine the stretch based on
the width of the graph, we can solve for the stretch factor
by putting in a known pair of values for

and

.

Now substituting in the point (1, 2)

Try It 3

Write the equation for the absolute value function that is
horizontally shifted left 2 units, is vertically flipped, and
vertically shifted up 3 units.

Solution
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Q & A

Do the graphs of absolute value functions always
intersect the vertical axis? The horizontal axis?

Yes, they always intersect the vertical axis. The graph of
an absolute value function will intersect the vertical axis
when the input is zero.

No, they do not always intersect the horizontal axis.
The graph may or may not intersect the horizontal axis,
depending on how the graph has been shifted and
reflected. It is possible for the absolute value function to
intersect the horizontal axis at zero, one, or two points.

Figure 8. (a) The absolute value function does not intersect the horizontal axis.
(b) The absolute value function intersects the horizontal axis at one point. (c)
The absolute value function intersects the horizontal axis at two points.
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100. Solve an absolute value
equation

Now that we can graph an absolute value function, we will learn how
to solve an absolute value equation. To solve an equation such as

, we notice that the absolute value will be equal to 8 if the quantity
inside the absolute value is 8 or -8. This leads to two different
equations we can solve independently.

Knowing how to solve problems involving absolute value functions
is useful. For example, we may need to identify numbers or points
on a line that are at a specified distance from a given reference
point.

An absolute value equation is an equation in which the unknown
variable appears in absolute value bars. For example,

A General Note: Solutions to Absolute
Value Equations

For real numbers
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and

, an equation of the form

, with

, will have solutions when

or

. If

, the equation

has no solution.

How To: Given the formula for an
absolute value function, find the
horizontal intercepts of its graph.

1. Isolate the absolute value term.
2. Use

to write
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or

, assuming

0\\" title="B>0\\" class="latex mathjax">.
3. Solve for

.

Example 4: Finding the Zeros of an
Absolute Value Function

For the function

, find the values of

such that

.
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Solution

Figure 9

The function outputs 0 when or

.

Solve an absolute value equation | 717



Try It 4

For the function

, find the values of

such that

.

Solution

Q & A

Should we always expect two answers when solving

No. We may find one, two, or even no answers. For
example, there is no solution to

.
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How To: Given an absolute value
equation, solve it.

1. Isolate the absolute value term.
2. Use

to write

or

.
3. Solve for

.

Example 5: Solving an Absolute Value
Equation

Solve

.
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Solution

Isolating the absolute value on one side of the
equation gives the following.

The absolute value always returns a positive value, so
it is impossible for the absolute value to equal a negative
value. At this point, we notice that this equation has no
solutions.

Q & A

In Example 5, if

and

were graphed on the same set of axes, would the
graphs intersect?

No. The graphs of

and

would not intersect. This confirms, graphically, that the
equation
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has no solution.

Figure 10
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Try It 5

Find where the graph of the function

intersects the horizontal and vertical axes.

Solution
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101. Solve an absolute value
inequality

Absolute value equations may not always involve equalities. Instead,
we may need to solve an equation within a range of values. We
would use an absolute value inequality to solve such an equation. An
absolute value inequality is an equation of the form

,

where an expression

(and possibly but not usually

) depends on a variable

. Solving the inequality means finding the set of all

that satisfy the inequality. Usually this set will be an interval or the
union of two intervals.

There are two basic approaches to solving absolute value
inequalities: graphical and algebraic. The advantage of the graphical
approach is we can read the solution by interpreting the graphs of
two functions. The advantage of the algebraic approach is it yields
solutions that may be difficult to read from the graph.

For example, we know that all numbers within 200 units of 0 may
be expressed as

Suppose we want to know all possible returns on an investment if
we could earn some amount of money within $200 of $600. We
can solve algebraically for the set of values
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such that the distance between

and 600 is less than 200. We represent the distance between

and 600 as

.

OR

This means our returns would be between $400 and $800.
Sometimes an absolute value inequality problem will be presented

to us in terms of a shifted and/or stretched or compressed absolute
value function, where we must determine for which values of the
input the function’s output will be negative or positive.

How To: Given an absolute value
inequality of the form

for real numbers

and

where
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is positive, solve the absolute value
inequality algebraically.

1. Find boundary points by solving

.
2. Test intervals created by the boundary points to

determine where

.
3. Write the interval or union of intervals

satisfying the inequality in interval, inequality, or
set-builder notation.

Example 6: Solving an Absolute Value
Inequality

Solve

.
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Solution

With both approaches, we will need to know first
where the corresponding equality is true. In this case
we first will find where . We do this

because the absolute value is a function with no breaks,
so the only way the function values can switch from
being less than 4 to being greater than 4 is by passing
through where the values equal 4. Solve

.

After determining that the absolute value is equal to 4
at

and

, we know the graph can change only from being less
than 4 to greater than 4 at these values. This divides the
number line up into three intervals:

.
To determine when the function is less than 4, we

could choose a value in each interval and see if the
output is less than or greater than 4, as shown in the
table below.
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Interval test

0

6

11

Because

is the only interval in which the output at the test value
is less than 4, we can conclude that the solution to

is

, or

.

To use a graph, we can sketch the function

. To help us see where the outputs are 4, the line

could also be sketched.

Solve an absolute value inequality | 727



Figure 11. Graph to find the points satisfying an absolute value
inequality.

We can see the following:

• The output values of the absolute value are
equal to 4 at

and

.
• The graph of

is below the graph of

on

. This means the output values of

are less than the output values of
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.
• The absolute value is less than or equal to 4

between these two points, when

. In interval notation, this would be the interval

.

Analysis of the Solution

For absolute value inequalities,

The or symbol may be replaced by

.
So, for this example, we could use this alternative approach.

Try It 6

Solve
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.

How To: Given an absolute value
function, solve for the set of inputs where
the output is positive (or negative).

1. Set the function equal to zero, and solve for the
boundary points of the solution set.

2. Use test points or a graph to determine where
the function’s output is positive or negative.

Example 7: Using a Graphical Approach
to Solve Absolute Value Inequalities

Given the function

, determine the
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values for which the function values are negative.

Solution

We are trying to determine where

, which is when

. We begin by isolating the absolute value.

Next we solve for the equality

.
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Figure 12

Now, we can examine the graph of

to observe where the output is negative. We will observe
where the branches are below the x-axis. Notice that it
is not even important exactly what the graph looks like,
as long as we know that it crosses the horizontal axis at

and

and that the graph has been reflected vertically.

We observe that the graph of the function is below
the x-axis left of

and right of
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. This means the function values are negative to the left
of the first horizontal intercept at

, and negative to the right of the second intercept at

. This gives us the solution to the inequality.

In interval notation, this would be

.

Try It 7

Solve

.
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102. Key Concepts & Glossary

Key Concepts

• The absolute value function is commonly used to measure
distances between points.

• Applied problems, such as ranges of possible values, can also
be solved using the absolute value function.

• The graph of the absolute value function resembles a letter V.
It has a corner point at which the graph changes direction.

• In an absolute value equation, an unknown variable is the input
of an absolute value function.

• If the absolute value of an expression is set equal to a positive
number, expect two solutions for the unknown variable.

• An absolute value equation may have one solution, two
solutions, or no solutions.

• An absolute value inequality is similar to an absolute value
equation but takes the form

. It can be solved by determining the boundaries of the solution
set and then testing which segments are in the set.

• Absolute value inequalities can also be solved graphically.

Glossary

absolute value equation
an equation of the form

, with
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; it will have solutions when

or

absolute value inequality
a relationship in the form
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103. Section Exercises

1. How do you solve an absolute value equation?
2. How can you tell whether an absolute value function has two x-

intercepts without graphing the function?
3. When solving an absolute value function, the isolated absolute

value term is equal to a negative number. What does that tell you
about the graph of the absolute value function?

4. How can you use the graph of an absolute value function to
determine the x-values for which the function values are negative?

5. How do you solve an absolute value inequality algebraically?
6. Describe all numbers

that are at a distance of 4 from the number 8. Express this using
absolute value notation.

7. Describe all numbers

that are at a distance of

from the number −4. Express this using absolute value notation.
8. Describe the situation in which the distance that point is

from 10 is at least 15 units. Express this using absolute value
notation.

9. Find all function values

such that the distance from

to the value 8 is less than 0.03 units. Express this using absolute
value notation.

For the following exercises, solve the equations below and express
the answer using set notation.

10.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

For the following exercises, find the x- and y-intercepts of the
graphs of each function.

25.
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26.

27.

28.

For the following exercises, solve each inequality and write the
solution in interval notation.

29.

30.

31.

32.

33.

34.

35.

36.

For the following exercises, graph the absolute value function.
Plot at least five points by hand for each graph.

37.

38.

39.

For the following exercises, graph the given functions by hand.
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40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53. Use a graphing utility to graph

on the viewing window

. Identify the corresponding range. Show the graph.
54. Use a graphing utility to graph

on the viewing window
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. Identify the corresponding range. Show the graph.
For the following exercises, graph each function using a graphing

utility. Specify the viewing window.
55.

56.

For the following exercises, solve the inequality.
57.

58. If possible, find all values of

such that there are no

intercepts for

.
59. If possible, find all values of

such that there are no

-intercepts for

.
60. Cities A and B are on the same east-west line. Assume that

city A is located at the origin. If the distance from city A to city
B is at least 100 miles and

represents the distance from city B to city A, express this using
absolute value notation.

61. The true proportion

of people who give a favorable rating to Congress is 8% with a
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margin of error of 1.5%. Describe this statement using an absolute
value equation.

62. Students who score within 18 points of the number 82 will
pass a particular test. Write this statement using absolute value
notation and use the variable

for the score.
63. A machinist must produce a bearing that is within 0.01 inches

of the correct diameter of 5.0 inches. Using

as the diameter of the bearing, write this statement using absolute
value notation.

64. The tolerance for a ball bearing is 0.01. If the true diameter
of the bearing is to be 2.0 inches and the measured value of the
diameter is

inches, express the tolerance using absolute value notation.
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PART XV

INVERSE FUNCTIONS
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104. Introduction to Inverse
Functions

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Verify inverse functions.
• Determine the domain and range of an inverse

function, and restrict the domain of a function to
make it one-to-one.

• Find or evaluate the inverse of a function.
• Use the graph of a one-to-one function to graph its

inverse function on the same axes.

A reversible heat pump is a climate-control system that is an air
conditioner and a heater in a single device. Operated in one
direction, it pumps heat out of a house to provide cooling.
Operating in reverse, it pumps heat into the building from the
outside, even in cool weather, to provide heating. As a heater, a heat
pump is several times more efficient than conventional electrical
resistance heating.

If some physical machines can run in two directions, we might ask
whether some of the function “machines” we have been studying
can also run backwards. Figure 1 provides a visual representation of
this question. In this section, we will consider the reverse nature of
functions.
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Figure 1. Can a function “machine” operate in reverse?
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105. Verify inverse functions

Suppose a fashion designer traveling to Milan for a fashion show
wants to know what the temperature will be. He is not familiar with
the Celsius scale. To get an idea of how temperature measurements
are related, he asks his assistant, Betty, to convert 75 degrees
Fahrenheit to degrees Celsius. She finds the formula

and substitutes 75 for to calculate

.

Figure 2

Knowing that a comfortable 75 degrees Fahrenheit is about 24
degrees Celsius, he sends his assistant the week’s weather
forecast for Milan, and asks her to convert all of the temperatures
to degrees Fahrenheit.

At first, Betty considers using the formula she has already found
to complete the conversions. After all, she knows her algebra, and
can easily solve the equation for after substituting a value for .
For example, to convert 26 degrees Celsius, she could write
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After considering this option for a moment, however, she realizes
that solving the equation for each of the temperatures will be
awfully tedious. She realizes that since evaluation is easier than
solving, it would be much more convenient to have a different
formula, one that takes the Celsius temperature and outputs the
Fahrenheit temperature.

The formula for which Betty is searching corresponds to the idea
of an inverse function, which is a function for which the input of the
original function becomes the output of the inverse function and
the output of the original function becomes the input of the inverse
function.

Given a function , we represent its inverse as ,

read as inverse of The raised is part of the notation.
It is not an exponent; it does not imply a power of . In other

words, does not mean because is the

reciprocal of and not the inverse.
The “exponent-like” notation comes from an analogy between

function composition and multiplication: just as (1 is

the identity element for multiplication) for any nonzero number
, so

equals the identity function, that is,

This holds for all in the domain of . Informally, this means that
inverse functions “undo” each other. However, just as zero does not
have a reciprocal, some functions do not have inverses.
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Given a function , we can verify whether some other

function is the inverse of by checking whether either

or is true. We can test

whichever equation is more convenient to work with because they
are logically equivalent (that is, if one is true, then so is the other.)

For example, and

are inverse functions.

and

A few coordinate pairs from the graph of the function
are (−2, −8), (0, 0), and (2, 8). A few coordinate pairs from the graph
of the function

are (−8, −2), (0, 0), and (8, 2). If we interchange the input and output
of each coordinate pair of a function, the interchanged coordinate
pairs would appear on the graph of the inverse function.

A General Note: Inverse Function

For any one-to-one function , a function

is an inverse function of if

. This can also be written as
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for all in the domain of . It

also follows that for all in the

domain of if is the inverse of .

The notation is read inverse.” Like any other

function, we can use any variable name as the input for
, so we will often write , which we read

as inverse of
Keep in mind that

and not all functions have inverses.

Example 1: Identifying an Inverse
Function for a Given Input-Output Pair

If for a particular one-to-one function

and , what are the corresponding input

and output values for the inverse function?
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Solution

The inverse function reverses the input and output
quantities, so if

Alternatively, if we want to name the inverse function
, then and .

Analysis of the Solution

Notice that if we show the coordinate pairs in a table form, the input
and output are clearly reversed.
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Try It 1

Given that , what are the corresponding

input and output values of the original function

Solution

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://library.achievingthedream.org/

sanjaccollegealgebra/?p=151
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How To: Given two functions

and

, test whether the functions are inverses of
each other.

1. Determine whether or

.

2. If either statement is true, then both are true,
and and . If either

statement is false, then both are false, and
and .

Verify inverse functions | 753



Example 2: Testing Inverse
Relationships Algebraically

If and , is

Solution

so

This is enough to answer yes to the question, but we
can also verify the other formula.
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Analysis of the Solution

Notice the inverse operations are in reverse order of the operations
from the original function.

Try It 2

If and , is

Solution

Example 3: Determining Inverse
Relationships for Power Functions

If (the cube function) and

, is
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Solution

No, the functions are not inverses.

Analysis of the Solution

The correct inverse to the cube is, of course, the cube root

, that is, the one-third is an exponent, not a multiplier.

Try It 3

If

, is

Solution
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106. Determine the domain
and range of an inverse
function

The outputs of the function are the inputs to , so the range

of is also the domain of . Likewise, because the inputs to

are the outputs of , the domain of is the range of . We

can visualize the situation.

Figure 3. Domain and range of a function and its inverse

When a function has no inverse function, it is possible to create a
new function where that new function on a limited domain does
have an inverse function. For example, the inverse of

is , because a square “undoes” a

square root; but the square is only the inverse of the square root on
the domain , since that is the range of .

We can look at this problem from the other side, starting with
the square (toolkit quadratic) function . If we want

to construct an inverse to this function, we run into a problem,
because for every given output of the quadratic function, there are
two corresponding inputs (except when the input is 0). For example,
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the output 9 from the quadratic function corresponds to the inputs
3 and –3. But an output from a function is an input to its inverse;
if this inverse input corresponds to more than one inverse output
(input of the original function), then the “inverse” is not a function
at all! To put it differently, the quadratic function is not a one-to-
one function; it fails the horizontal line test, so it does not have an
inverse function. In order for a function to have an inverse, it must
be a one-to-one function.

In many cases, if a function is not one-to-one, we can still restrict
the function to a part of its domain on which it is one-to-one. For
example, we can make a restricted version of the square function

with its range limited to , which is a one-

to-one function (it passes the horizontal line test) and which has an
inverse (the square-root function).

If on , then the inverse function is

.

• The domain of = range of = .

• The domain of = range of = .

Q & A

Is it possible for a function to have more than one
inverse?

No. If two supposedly different functions, say, and ,
both meet the definition of being inverses of another
function , then you can prove that . We have

just seen that some functions only have inverses if we
restrict the domain of the original function. In these
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cases, there may be more than one way to restrict the
domain, leading to different inverses. However, on any
one domain, the original function still has only one
unique inverse.

A General Note: Domain and Range of
Inverse Functions

The range of a function is the domain of the

inverse function .

The domain of is the range of .

How To: Given a function, find the
domain and range of its inverse.

1. If the function is one-to-one, write the range of
the original function as the domain of the inverse,
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and write the domain of the original function as
the range of the inverse.

2. If the domain of the original function needs to
be restricted to make it one-to-one, then this
restricted domain becomes the range of the
inverse function.

Example 4: Finding the Inverses of
Toolkit Functions

Identify which of the toolkit functions besides the
quadratic function are not one-to-one, and find a
restricted domain on which each function is one-to-
one, if any. The toolkit functions are reviewed below. We
restrict the domain in such a fashion that the function
assumes all y-values exactly once.
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Constant Identity Quadratic Cubic Recipr

Reciprocal
squared Cube root Square root Absolute

value

Solution

The constant function is not one-to-one, and there is
no domain (except a single point) on which it could be
one-to-one, so the constant function has no meaningful
inverse.

The absolute value function can be restricted to the
domain , where it is equal to the identity

function.

The reciprocal-squared function can be restricted to
the domain .
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Analysis of the Solution

We can see that these functions (if unrestricted) are not one-to-one
by looking at their graphs. They both would fail the horizontal line
test. However, if a function is restricted to a certain domain so that
it passes the horizontal line test, then in that restricted domain, it
can have an inverse.

Figure 4. (a) Absolute value (b) Reciprocal squared

Try It 4

The domain of function is and the range of

function is . Find the domain and range of

the inverse function.

Solution
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107. Find or evaluate the
inverse of a function

Once we have a one-to-one function, we can evaluate its inverse
at specific inverse function inputs or construct a complete
representation of the inverse function in many cases.

Inverting Tabular Functions

Suppose we want to find the inverse of a function represented in
table form. Remember that the domain of a function is the range
of the inverse and the range of the function is the domain of the
inverse. So we need to interchange the domain and range.

Each row (or column) of inputs becomes the row (or column) of
outputs for the inverse function. Similarly, each row (or column)
of outputs becomes the row (or column) of inputs for the inverse
function.

Example 5: Interpreting the Inverse of a
Tabular Function

A function is given below, showing distance in

miles that a car has traveled in minutes. Find and
interpret .
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30 50 70 90

20 40 60 70

Solution

The inverse function takes an output of and returns

an input for . So in the expression , 70 is an

output value of the original function, representing 70
miles. The inverse will return the corresponding input of
the original function , 90 minutes, so

. The interpretation of this is that, to

drive 70 miles, it took 90 minutes.

Alternatively, recall that the definition of the inverse
was that if , then . By this

definition, if we are given , then we

are looking for a value so that . In this

case, we are looking for a so that , which

is when .
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Try It 5

Using the table below, find and interpret (a) ,

and (b) .

30 50 60 70 90

20 40 50 60 70

Solution

Evaluating the Inverse of a Function, Given a
Graph of the Original Function

We saw in Functions and Function Notation that the domain of
a function can be read by observing the horizontal extent of its
graph. We find the domain of the inverse function by observing
the vertical extent of the graph of the original function, because
this corresponds to the horizontal extent of the inverse function.
Similarly, we find the range of the inverse function by observing the
horizontal extent of the graph of the original function, as this is the
vertical extent of the inverse function. If we want to evaluate an
inverse function, we find its input within its domain, which is all or
part of the vertical axis of the original function’s graph.
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How To: Given the graph of a function,
evaluate its inverse at specific points.

1. Find the desired input on the y-axis of the given
graph.

2. Read the inverse function’s output from the
x-axis of the given graph.

Example 6: Evaluating a Function and
Its Inverse from a Graph at Specific
Points

A function is given in Figure 5. Find and

.
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Figure 5

Solution

To evaluate , we find 3 on the x-axis and find

the corresponding output value on the y-axis. The point
tells us that .

To evaluate , recall that by definition

means the value of x for which .

By looking for the output value 3 on the vertical axis, we
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find the point on the graph, which means

, so by definition, .

Figure 6

Try It 6

Using the graph in Example 6, (a) find , and (b)

estimate .

Solution
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Finding Inverses of Functions Represented by
Formulas

Sometimes we will need to know an inverse function for all elements
of its domain, not just a few. If the original function is given as
a formula— for example, as a function of

we can often find the inverse function

by solving to obtain as a function of .

How To: Given a function represented
by a formula, find the inverse.

1. Make sure is a one-to-one function.
2. Solve for .
3. Interchange and .

Example 7: Inverting the
Fahrenheit-to-Celsius Function

Find a formula for the inverse function that gives
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Fahrenheit temperature as a function of Celsius
temperature.

Solution

By solving in general, we have uncovered the inverse
function. If

,
then

.
In this case, we introduced a function to represent

the conversion because the input and output variables
are descriptive, and writing could get confusing.
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Try It 7

Solve for in terms of given

Solution

Example 8: Solving to Find an Inverse
Function

Find the inverse of the function

.

Solution
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So

or

.

Analysis of the Solution

The domain and range of exclude the values 3 and 4, respectively.

and are equal at two points but are not the same function,

as we can see by creating the table below.

1 2 5

3 2 5

Example 9: Solving to Find an Inverse
with Radicals

Find the inverse of the function
.
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Solution

So .

The domain of is . Notice that the range of

is , so this means that the domain of the

inverse function is also .

Analysis of the Solution

The formula we found for looks like it would be valid for

all real . However, itself must have an inverse (namely, )

so we have to restrict the domain of to in order to

make a one-to-one function. This domain of is exactly

the range of .
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Try It 8

What is the inverse of the function
State the domains of both the

function and the inverse function.

Solution
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108. Use the graph of a
function to graph its inverse

Now that we can find the inverse of a function, we will explore the
graphs of functions and their inverses. Let us return to the quadratic
function restricted to the domain , on which

this function is one-to-one, and graph it as in Figure 7.

Figure 7. Quadratic function with domain restricted to [0, ∞).

Restricting the domain to makes the function one-to-one

(it will obviously pass the horizontal line test), so it has an inverse on
this restricted domain.

We already know that the inverse of the toolkit quadratic function

is the square root function, that is, . What

happens if we graph both and on the same set of axes,

using the axis for the input to both

We notice a distinct relationship: The graph of is the
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graph of reflected about the diagonal line , which we

will call the identity line, shown in Figure 8.

Figure 8. Square and square-root functions on the non-negative domain

This relationship will be observed for all one-to-one functions,
because it is a result of the function and its inverse swapping inputs
and outputs. This is equivalent to interchanging the roles of the
vertical and horizontal axes.

Example 10: Finding the Inverse of a
Function Using Reflection about the
Identity Line

Given the graph of , sketch a graph of

.
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Figure 9

Solution

This is a one-to-one function, so we will be able to
sketch an inverse. Note that the graph shown has an
apparent domain of and range of

, so the inverse will have a domain of and

range of .
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If we reflect this graph over the line , the
point reflects to and the point

reflects to . Sketching the inverse on the same

axes as the original graph gives us the result in Figure
10.

Figure 10. The function and its inverse, showing reflection about
the identity line

Try It 9

Draw graphs of the functions and .
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Solution

Q & A

Is there any function that is equal to its own
inverse?

Yes. If , then , and we can

think of several functions that have this property. The
identity function does, and so does the reciprocal
function, because

Any function , where is a constant,

is also equal to its own inverse.
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109. Key Concepts & Glossary

Key Concepts

• If is the inverse of , then

• .

• Each of the toolkit functions has an inverse.
• For a function to have an inverse, it must be one-to-one (pass

the horizontal line test).
• A function that is not one-to-one over its entire domain may

be one-to-one on part of its domain.
• For a tabular function, exchange the input and output rows to

obtain the inverse.
• The inverse of a function can be determined at specific points

on its graph.
• To find the inverse of a formula, solve the equation

for as a function of . Then exchange the

labels and .
• The graph of an inverse function is the reflection of the graph

of the original function across the line .

Glossary

inverse function
for any one-to-one function , the inverse is a function

such that for all in the

domain of ; this also implies that for all

in the domain of
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110. Section Exercises

1. Describe why the horizontal line test is an effective way to
determine whether a function is one-to-one?

2. Why do we restrict the domain of the function

to find the function’s inverse?
3. Can a function be its own inverse? Explain.
4. Are one-to-one functions either always increasing or always

decreasing? Why or why not?
5. How do you find the inverse of a function algebraically?
6. Show that the function is its own inverse for

all real numbers .
For the following exercises, find for each function.

7.

8.

9.

10.

11.

12.

For the following exercises, find a domain on which each function
is one-to-one and non-decreasing. Write the domain in interval

notation. Then find the inverse of restricted to that domain.

13.

14.

15.

16. Given
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and

a. Find and

b. What does the answer tell us about the relationship between
and

For the following exercises, use function composition to verify
that and are inverse functions.

17. and

18. and

For the following exercises, use a graphing utility to determine
whether each function is one-to-one.

19.

20.

21.

22.

For the following exercises, determine whether the graph
represents a one-to-one function.

23.
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24.

For the following exercises, use the graph of shown in [link].

25. Find .
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26. Solve .

27. Find .

28. Solve .

For the following exercises, use the graph of the one-to-one
function shown below.

=2}” width=”487″ height=”254″ data-media-type=”image/jpg”>
29. Sketch the graph of .

30. Find .

31. If the complete graph of is shown, find the domain of .
32. If the complete graph of is shown, find the range of .
For the following exercises, evaluate or solve, assuming that the

function is one-to-one.

33. If , find .

34. If , find .

35. If , find .

36. If , find .

For the following exercises, use the values listed in the table
below to evaluate or solve.
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0 8

1 0

2 7

3 4

4 2

5 6

6 5

7 3

8 9

9 1

37. Find .

38. Solve .

39. Find .

40. Solve .

41. Use the tabular representation of to create a table for

.

3 6 9 13 14

1 4 7 12 16

For the following exercises, find the inverse function. Then, graph
the function and its inverse.

42.

43.

44. Find the inverse function of . Use a
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graphing utility to find its domain and range. Write the domain and
range in interval notation.

45. To convert from degrees Celsius to degrees Fahrenheit,

we use the formula . Find the inverse

function, if it exists, and explain its meaning.
46. The circumference of a circle is a function of its radius

given by . Express the radius of a circle as a

function of its circumference. Call this function . Find

and interpret its meaning.

47. A car travels at a constant speed of 50 miles per hour. The
distance the car travels in miles is a function of time, , in hours
given by . Find the inverse function by expressing the

time of travel in terms of the distance traveled. Call this function
. Find and interpret its meaning.

786 | Section Exercises



PART XVI

LINEAR FUNCTIONS
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111. Introduction to Linear
Functions

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Represent a linear function.
• Determine whether a linear function is increasing,

decreasing, or constant.
• Calculate and interpret slope.
• Write the point-slope form of an equation.
• Write and interpret a linear function.

Introduction to Linear Functions

A bamboo forest in China (credit: “JFXie”/Flickr)
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Imagine placing a plant in the ground one day and finding that it
has doubled its height just a few days later. Although it may seem
incredible, this can happen with certain types of bamboo species.
These members of the grass family are the fastest-growing plants in
the world. One species of bamboo has been observed to grow nearly
1.5 inches every hour.1 In a twenty-four hour period, this bamboo
plant grows about 36 inches, or an incredible 3 feet! A constant rate
of change, such as the growth cycle of this bamboo plant, is a linear
function.

Recall from Functions and Function Notation that a function is
a relation that assigns to every element in the domain exactly one
element in the range. Linear functions are a specific type of function
that can be used to model many real-world applications, such as
plant growth over time. In this chapter, we will explore linear
functions, their graphs, and how to relate them to data.
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Shanghai MagLev Train (credit:
“kanegen”/Flickr)

Footnotes

1. 1 http://www.guinnessworldrecords.com/records-3000/
fastest-growing-plant/

Just as with the growth of a
bamboo plant, there are many
situations that involve constant
change over time. Consider, for
example, the first commercial
maglev train in the world, the
Shanghai MagLev Train. It
carries passengers comfortably
for a 30-kilometer trip from the
airport to the subway station in
only eight minutes.1

Suppose a maglev train were to travel a long distance, and that
the train maintains a constant speed of 83 meters per second for a
period of time once it is 250 meters from the station. How can we
analyze the train’s distance from the station as a function of time? In
this section, we will investigate a kind of function that is useful for
this purpose, and use it to investigate real-world situations such as
the train’s distance from the station at a given point in time.

1. http://www.chinahighlights.com/shanghai/
transportation/maglev-train.htm
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112. Represent a linear
function

The function describing the train’s motion is a linear function,
which is defined as a function with a constant rate of change, that
is, a polynomial of degree 1. There are several ways to represent
a linear function, including word form, function notation, tabular
form, and graphical form. We will describe the train’s motion as a
function using each method.

Representing a Linear Function in Word Form

Let’s begin by describing the linear function in words. For the train
problem we just considered, the following word sentence may be
used to describe the function relationship.

• The train’s distance from the station is a function of the time
during which the train moves at a constant speed plus its
original distance from the station when it began moving at
constant speed.

The speed is the rate of change. Recall that a rate of change is
a measure of how quickly the dependent variable changes with
respect to the independent variable. The rate of change for this
example is constant, which means that it is the same for each input
value. As the time (input) increases by 1 second, the corresponding
distance (output) increases by 83 meters. The train began moving at
this constant speed at a distance of 250 meters from the station.
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Representing a Linear Function in Function
Notation

Another approach to representing linear functions is by using
function notation. One example of function notation is an equation
written in the form known as the slope-intercept form of a line,
where is the input value, is the rate of change, and is the
initial value of the dependent variable.

In the example of the train, we might use the notation in

which the total distance
is a function of the time . The rate, , is 83 meters per second.
The initial value of the dependent variable is the original distance
from the station, 250 meters. We can write a generalized equation
to represent the motion of the train.

Representing a Linear Function in Tabular Form

A third method of representing a linear function is through the use
of a table. The relationship between the distance from the station
and the time is represented in the table in Figure 1. From the table,
we can see that the distance changes by 83 meters for every 1
second increase in time.
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Figure 1. Tabular representation of the function D showing selected input and
output values

Q & A

Can the input in the previous example be any real
number?

No. The input represents time, so while nonnegative
rational and irrational numbers are possible, negative
real numbers are not possible for this example. The input
consists of non-negative real numbers.

Representing a Linear Function in Graphical
Form

Another way to represent linear functions is visually, using a graph.
We can use the function relationship from above,
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, to draw a graph, represented in the graph

in Figure 2. Notice the graph is a line. When we plot a linear
function, the graph is always a line.

The rate of change, which is constant, determines the slant, or
slope of the line. The point at which the input value is zero is
the vertical intercept, or y-intercept, of the line. We can see from
the graph that the y-intercept in the train example we just saw is

and represents the distance of the train from the station

when it began moving at a constant speed.

Figure 2. The graph of . Graphs of linear

functions are lines because the rate of change is constant.
Notice that the graph of the train example is restricted, but this

is not always the case. Consider the graph of the line
. Ask yourself what numbers can be input to the

function, that is, what is the domain of the function? The domain is
comprised of all real numbers because any number may be doubled,
and then have one added to the product.
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A General Note: Linear Function

A linear function is a function whose graph is a line.
Linear functions can be written in the slope-intercept
form of a line

where is the initial or starting value of the function
(when input, ), and is the constant rate of
change, or slope of the function. The y-intercept is at

.

Example 1: Using a Linear Function to
Find the Pressure on a Diver

The pressure, , in pounds per square inch (PSI) on
the diver in Figure 3 depends upon her depth below the
water surface, , in feet. This relationship may be
modeled by the equation,

. Restate this function

in words.
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Figure 3. (credit: Ilse Reijs and Jan-Noud Hutten)

Solution

To restate the function in words, we need to describe
each part of the equation. The pressure as a function of
depth equals four hundred thirty-four thousandths
times depth plus fourteen and six hundred ninety-six
thousandths.
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Analysis of the Solution

The initial value, 14.696, is the pressure in PSI on the diver at a depth
of 0 feet, which is the surface of the water. The rate of change, or
slope, is 0.434 PSI per foot. This tells us that the pressure on the
diver increases 0.434 PSI for each foot her depth increases.
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Figure 4

113. Determine whether a
linear function is increasing,
decreasing, or constant

The linear functions we used in the two previous examples
increased over time, but not every linear function does. A linear
function may be increasing, decreasing, or constant.

For an increasing function, as with the train example,
the output values increase as the input values increase.

The graph of an increasing function has a positive slope. A line
with a positive slope slants upward from left to right as in (a).

For a decreasing function, the slope is negative.
The output values decrease as the input values increase.

A line with a negative slope slants downward from left to right as
in (b). If the function is constant, the output values are the same for
all input values so the slope is zero. A line with a slope of zero is
horizontal as in (c).

Determine whether a linear function
is increasing, decreasing, or



A General Note: Increasing and
Decreasing Functions

The slope determines if the function is an increasing
linear function, a decreasing linear function, or a
constant function.

•
.

•
.

•
.

Example 2: Deciding whether a Function
Is Increasing, Decreasing, or Constant

Some recent studies suggest that a teenager sends an
average of 60 texts per day.1 For each of the following

1. http://www.cbsnews.com/
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scenarios, find the linear function that describes the
relationship between the input value and the output
value. Then, determine whether the graph of the
function is increasing, decreasing, or constant.

1. The total number of texts a teen sends is
considered a function of time in days. The input is
the number of days, and output is the total
number of texts sent.

2. A teen has a limit of 500 texts per month in his
or her data plan. The input is the number of days,
and output is the total number of texts remaining
for the month.

3. A teen has an unlimited number of texts in his
or her data plan for a cost of $50 per month. The
input is the number of days, and output is the
total cost of texting each month.

Solution

Analyze each function.

8301-501465_162-57400228-501465/teens-are-
sending-60-texts-a-day-study-says/
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1. The function can be represented as
where is the number of days.

The slope, 60, is positive so the function is
increasing. This makes sense because the total
number of texts increases with each day.

2. The function can be represented as
where is the number

of days. In this case, the slope is negative so the
function is decreasing. This makes sense because
the number of texts remaining decreases each day
and this function represents the number of texts
remaining in the data plan after days.

3. The cost function can be represented as
because the number of days does

not affect the total cost. The slope is 0 so the
function is constant.
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114. Calculate and interpret
slope

In the examples we have seen so far, we have had the slope provided
for us. However, we often need to calculate the slope given input
and output values. Given two values for the input, and , and
two corresponding values for the output, and —which can be
represented by a set of points, and —we can

calculate the slope , as follows

where

is the vertical displacement and

is the horizontal displacement. Note in function notation two
corresponding values for the output

and

for the function ,

and

, so we could equivalently write

The graph in Figure 5 indicates how the slope of the line between
the points,

and
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, is calculated. Recall that the slope measures steepness. The greater
the absolute value of the slope, the steeper the line is.

Figure 5

The slope of a function is calculated by the change in divided by
the change in . It does not matter which coordinate is used as the

and which is the , as long as each calculation

is started with the elements from the same coordinate pair.
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Q & A

Are the units for slope always

?

Yes. Think of the units as the change of output value for
each unit of change in input value. An example of slope
could be miles per hour or dollars per day. Notice the
units appear as a ratio of units for the output per units
for the input.

A General Note: Calculate Slope

The slope, or rate of change, of a function can be
calculated according to the following:

where

and

are input values,
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and

are output values.

How To: Given two points from a linear
function, calculate and interpret the
slope.

1. Determine the units for output and input values.
2. Calculate the change of output values and

change of input values.
3. Interpret the slope as the change in output

values per unit of the input value.
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Example 3: Finding the Slope of a Linear
Function

If is a linear function, and

and

are points on the line, find the slope. Is this function
increasing or decreasing?

Solution

The coordinate pairs are

and

. To find the rate of change, we divide the change in
output by the change in input.

We could also write the slope as . The
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function is increasing because 0" title="m>0"
class="latex mathjax">.

Analysis of the Solution

As noted earlier, the order in which we write the points does not
matter when we compute the slope of the line as long as the first
output value, or y-coordinate, used corresponds with the first input
value, or x-coordinate, used.

Try It 1

If is a linear function, and

and

are points on the line, find the slope. Is this function
increasing or decreasing?

Solution
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Example 4: Finding the Population
Change from a Linear Function

The population of a city increased from 23,400 to
27,800 between 2008 and 2012. Find the change of
population per year if we assume the change was
constant from 2008 to 2012.

Solution

The rate of change relates the change in population to
the change in time. The population increased by

people over the
four-year time interval. To find the rate of change,
divide the change in the number of people by the
number of years.

So the population increased by 1,100 people per year.
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Analysis of the Solution

Because we are told that the population increased, we would expect
the slope to be positive. This positive slope we calculated is
therefore reasonable.

Try It 2

The population of a small town increased from 1,442 to
1,868 between 2009 and 2012. Find the change of
population per year if we assume the change was constant
from 2009 to 2012.

Solution
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115. Write the point-slope
form of an equation

Up until now, we have been using the slope-intercept form of a
linear equation to describe linear functions. Here, we will learn
another way to write a linear function, the point-slope form.

The point-slope form is derived from the slope formula.

Keep in mind that the slope-intercept form and the point-slope
form can be used to describe the same function. We can move
from one form to another using basic algebra. For example, suppose
we are given an equation in point-slope form,

. We can convert it to the slope-intercept form as shown.

Therefore, the same line can be described in slope-intercept form
as

.

Write the point-slope form of an
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A General Note: Point-Slope Form of a
Linear Equation

The point-slope form of a linear equation takes the
form

where is the slope,

are the

coordinates of a specific point through which the line
passes.

Writing the Equation of a Line Using a Point and
the Slope

The point-slope form is particularly useful if we know one point
and the slope of a line. Suppose, for example, we are told that
a line has a slope of 2 and passes through the point

. We know that

and that

and
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. We can substitute these values into the general point-slope
equation.

If we wanted to then rewrite the equation in slope-intercept form,
we apply algebraic techniques.

Both equations,

and

, describe the same line. See Figure 6.

Figure 6
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Example 5: Writing Linear Equations
Using a Point and the Slope

Write the point-slope form of an equation of a line
with a slope of 3 that passes through the point

. Then rewrite it in the slope-intercept form.

Solution

Let’s figure out what we know from the given
information. The slope is 3, so m = 3. We also know one
point, so we know

and

. Now we can substitute these values into the general
point-slope equation.

Then we use algebra to find the slope-intercept form.

814 | Write the point-slope form of an equation



Try It 3

Write the point-slope form of an equation of a line with a
slope of –2 that passes through the point

. Then rewrite it in the slope-intercept form.

Solution

Writing the Equation of a Line Using Two Points

The point-slope form of an equation is also useful if we know any
two points through which a line passes. Suppose, for example, we
know that a line passes through the points

and

. We can use the coordinates of the two points to find the slope.

Now we can use the slope we found and the coordinates of one of
the points to find the equation for the line. Let use (0, 1) for our
point.

As before, we can use algebra to rewrite the equation in the slope-
intercept form.

Write the point-slope form of an equation | 815



Both equations describe the line shown in Figure 7.

Figure 7

Example 6: Writing Linear Equations
Using Two Points

Write the point-slope form of an equation of a line
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that passes through the points (5, 1) and (8, 7). Then
rewrite it in the slope-intercept form.

Solution

Let’s begin by finding the slope.

So

. Next, we substitute the slope and the coordinates for
one of the points into the general point-slope equation.
We can choose either point, but we will use

.

The point-slope equation of the line is

. To rewrite the equation in slope-intercept form, we
use algebra.

The slope-intercept equation of the line is
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.

Try It 4

Write the point-slope form of an equation of a line that
passes through the points

and

. Then rewrite it in the slope-intercept form.

Solution
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116. Write and interpret a
linear function

Now that we have written equations for linear functions in both
the slope-intercept form and the point-slope form, we can choose
which method to use based on the information we are given. That
information may be provided in the form of a graph, a point and a
slope, two points, and so on. Look at the graph of the function f in
Figure 8.

Figure 8

We are not given the slope of the line, but we can choose any two
points on the line to find the slope. Let’s choose (0, 7) and (4, 4). We
can use these points to calculate the slope.
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Now we can substitute the slope and the coordinates of one of the
points into the point-slope form.

If we want to rewrite the equation in the slope-intercept form, we
would find

Figure 9

If we wanted to find the slope-intercept form without first writing
the point-slope form, we could have recognized that the line
crosses the y-axis when the output value is 7. Therefore, b = 7. We
now have the initial value b and the slope m so we can substitute
m and b into the slope-intercept form of a line.

So the function is

, and the linear equation would be

820 | Write and interpret a linear function



.

How To: Given the graph of a linear
function, write an equation to represent
the function.

1. Identify two points on the line.
2. Use the two points to calculate the slope.
3. Determine where the line crosses the y-axis to

identify the y-intercept by visual inspection.
4. Substitute the slope and y-intercept into the

slope-intercept form of a line equation.

Example 7: Writing an Equation for a
Linear Function

Write an equation for a linear function given a graph
of f shown in Figure 10.
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Figure 10
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Solution

Identify two points on the line, such as (0, 2) and (–2,
–4). Use the points to calculate the slope.

Substitute the slope and the coordinates of one of the
points into the point-slope form.

We can use algebra to rewrite the equation in the
slope-intercept form.

Analysis of the Solution

This makes sense because we can see from Figure 11 that the line
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crosses the y-axis at the point (0, 2), which is the y-intercept, so b =
2.

Figure 11

Example 8: Writing an Equation for a
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Linear Cost Function

Suppose Ben starts a company in which he incurs a
fixed cost of $1,250 per month for the overhead, which
includes his office rent. His production costs are $37.50
per item. Write a linear function C where C(x) is the cost
for x items produced in a given month.

Solution

The fixed cost is present every month, $1,250. The
costs that can vary include the cost to produce each
item, which is $37.50 for Ben. The variable cost, called
the marginal cost, is represented by 37.5. The cost Ben
incurs is the sum of these two costs, represented by

.
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Analysis of the Solution

If Ben produces 100 items in a month, his monthly cost is
represented by

So his monthly cost would be $5,000.

Example 9: Writing an Equation for a
Linear Function Given Two Points

If f is a linear function, with

, and

, find an equation for the function in slope-intercept
form.

Solution

We can write the given points using coordinates.
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We can then use the points to calculate the slope.

Substitute the slope and the coordinates of one of the
points into the point-slope form.

We can use algebra to rewrite the equation in the
slope-intercept form.

Try It 5

If

is a linear function, with
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, and

, find an equation for the function in slope-intercept form.

Solution

Modeling Real-World Problems with Linear
Functions

In the real world, problems are not always explicitly stated in terms
of a function or represented with a graph. Fortunately, we can
analyze the problem by first representing it as a linear function and
then interpreting the components of the function. As long as we
know, or can figure out, the initial value and the rate of change of
a linear function, we can solve many different kinds of real-world
problems.

How To: Given a linear function f and
the initial value and rate of change,
evaluate f(c).

1. Determine the initial value and the rate of
change (slope).

2. Substitute the values into
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.
3. Evaluate the function at

.

Example 10: Using a Linear Function to
Determine the Number of Songs in a
Music Collection

Marcus currently has 200 songs in his music
collection. Every month, he adds 15 new songs. Write a
formula for the number of songs, N, in his collection as a
function of time, t, the number of months. How many
songs will he own in a year?
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Solution

The initial value for this function is 200 because he
currently owns 200 songs, so N(0) = 200, which means
that b = 200.

Figure 12

The number of songs increases by 15 songs per
month, so the rate of change is 15 songs per month.
Therefore we know that m = 15. We can substitute the
initial value and the rate of change into the slope-
intercept form of a line.

We can write the formula

.

With this formula, we can then predict how many
songs Marcus will have in 1 year (12 months). In other
words, we can evaluate the function at t = 12.
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Marcus will have 380 songs in 12 months.

Analysis of the Solution

Notice that N is an increasing linear function. As the input (the
number of months) increases, the output (number of songs)
increases as well.

Example 11: Using a Linear Function to
Calculate Salary Plus Commission

Working as an insurance salesperson, Ilya earns a base
salary plus a commission on each new policy. Therefore,
Ilya’s weekly income, I, depends on the number of new
policies, n, he sells during the week. Last week he sold 3
new policies, and earned $760 for the week. The week
before, he sold 5 new policies and earned $920. Find an
equation for I(n), and interpret the meaning of the
components of the equation.

Write and interpret a linear function | 831



Solution

The given information gives us two input-output
pairs: (3, 760) and (5, 920). We start by finding the rate of
change.

Keeping track of units can help us interpret this
quantity. Income increased by $160 when the number of
policies increased by 2, so the rate of change is $80 per
policy. Therefore, Ilya earns a commission of $80 for
each policy sold during the week.

We can then solve for the initial value.

The value of b is the starting value for the function
and represents Ilya’s income when n = 0, or when no
new policies are sold. We can interpret this as Ilya’s base
salary for the week, which does not depend upon the
number of policies sold.

We can now write the final equation.
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Our final interpretation is that Ilya’s base salary is
$520 per week and he earns an additional $80
commission for each policy sold.

Example 12: Using Tabular Form to
Write an Equation for a Linear Function

The table below relates the number of rats in a
population to time, in weeks. Use the table to write a
linear equation.

w, number of weeks 0 2 4 6

P(w), number of rats 1000 1080 1160 1240

Solution

We can see from the table that the initial value for the
number of rats is 1000, so b = 1000.
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Rather than solving for m, we can tell from looking at
the table that the population increases by 80 for every 2
weeks that pass. This means that the rate of change is
80 rats per 2 weeks, which can be simplified to 40 rats
per week.

If we did not notice the rate of change from the table
we could still solve for the slope using any two points
from the table. For example, using (2, 1080) and (6, 1240)

Q & A

Is the initial value always provided in a table of
values like the table in Example 12?

No. Sometimes the initial value is provided in a table of
values, but sometimes it is not. If you see an input of 0,
then the initial value would be the corresponding output.
If the initial value is not provided because there is no
value of input on the table equal to 0, find the slope,
substitute one coordinate pair and the slope into
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, and solve for b.

Try It 6

A new plant food was introduced to a young tree to test
its effect on the height of the tree. The table below shows
the height of the tree, in feet, x months since the
measurements began. Write a linear function, H(x), where
x is the number of months since the start of the
experiment.

x 0 2 4 8 12

H(x) 12.5 13.5 14.5 16.5 18.5

Solution
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117. Key Concepts & Glossary

Key Equations

slope-intercept
form of a line

slope

point-slope
form of a line

Key Concepts

• The ordered pairs given by a linear function represent points
on a line.

• Linear functions can be represented in words, function
notation, tabular form, and graphical form.

• The rate of change of a linear function is also known as the
slope.

• An equation in the slope-intercept form of a line includes the
slope and the initial value of the function.

• The initial value, or y-intercept, is the output value when the
input of a linear function is zero. It is the y-value of the point
at which the line crosses the y-axis.

• An increasing linear function results in a graph that slants
upward from left to right and has a positive slope.

• A decreasing linear function results in a graph that slants
downward from left to right and has a negative slope.

• A constant linear function results in a graph that is a horizontal
line.

• Analyzing the slope within the context of a problem indicates
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whether a linear function is increasing, decreasing, or
constant.

• The slope of a linear function can be calculated by dividing the
difference between y-values by the difference in
corresponding x-values of any two points on the line.

• The slope and initial value can be determined given a graph or
any two points on the line.

• One type of function notation is the slope-intercept form of an
equation.

• The point-slope form is useful for finding a linear equation
when given the slope of a line and one point.

• The point-slope form is also convenient for finding a linear
equation when given two points through which a line passes.

• The equation for a linear function can be written if the slope
m and initial value b are known.

• A linear function can be used to solve real-world problems.
• A linear function can be written from tabular form.

Glossary

decreasing linear function
a function with a negative slope: If

.
increasing linear function

a function with a positive slope: If

.
linear function

a function with a constant rate of change that is a polynomial
of degree 1, and whose graph is a straight line

point-slope form
the equation for a line that represents a linear function of the
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form

slope
the ratio of the change in output values to the change in input
values; a measure of the steepness of a line

slope-intercept form
the equation for a line that represents a linear function in the
form

y-intercept
the value of a function when the input value is zero; also
known as initial value
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118. Section Exercises

1. Terry is skiing down a steep hill. Terry’s elevation, E(t), in feet
after t seconds is given by

. Write a complete sentence describing Terry’s starting elevation
and how it is changing over time.

2. Maria is climbing a mountain. Maria’s elevation, E(t), in feet
after t minutes is given by

. Write a complete sentence describing Maria’s starting elevation
and how it is changing over time.

3. Jessica is walking home from a friend’s house. After 2 minutes
she is 1.4 miles from home. Twelve minutes after leaving, she is 0.9
miles from home. What is her rate in miles per hour?

4. Sonya is currently 10 miles from home and is walking farther
away at 2 miles per hour. Write an equation for her distance from
home t hours from now.

5. A boat is 100 miles away from the marina, sailing directly toward
it at 10 miles per hour. Write an equation for the distance of the boat
from the marina after t hours.

6. Timmy goes to the fair with $40. Each ride costs $2. How much
money will he have left after riding rides?

For the following exercises, determine whether the equation of
the curve can be written as a linear function.

7.

8.

9.

10.
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11.

12.

13.

14.

For the following exercises, determine whether each function is
increasing or decreasing.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

For the following exercises, find the slope of the line that passes
through the two given points.

25.
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and

26.

and

27.

and

28.

and

29.

and

For the following exercises, given each set of information, find a
linear equation satisfying the conditions, if possible.

30.

, and

31.

and

32.

and

33. Passes through
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and

34. Passes through

and

35. Passes through

and

36. x intercept at

and y intercept at

37. x intercept at

and y intercept at

For the following exercises, find the slope of the lines graphed.
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38.
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39.
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40.

For the following exercises, write an equation for the lines
graphed.
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41.
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42.

43.
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44.
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45.
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46.

For the following exercises, which of the tables could represent a
linear function? For each that could be linear, find a linear equation
that models the data.

47.

x 0 5 10 15

g(x) 5 –10 –25 –40

48.

x 0 5 10 15

h(x) 5 30 105 230

49.
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x 0 5 10 15

f(x) –5 20 45 70

50.

x 5 10 20 25

k(x) 28 13 58 73

51.

x 0 2 4 6

g(x) 6 –19 –44 –69

52.

x 2 4 6 8

f(x) –4 16 36 56

53.

x 2 4 6 8

f(x) –4 16 36 56

54.

x 0 2 6 8

k(x) 6 31 106 231

55. If f is a linear function,

, find an equation for the function.
56. Graph the function f on a domain of

. Enter the function in a graphing utility. For the viewing window, set
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the minimum value of x to be –10 and the maximum value of x to be
10.

57. Graph the function f on a domain of

58. The table below shows the input, w, and output, k, for a linear
function k. a. Fill in the missing values of the table. b. Write the linear
function k, round to 3 decimal places.

w –10 5.5 67.5 b

k 30 –26 a –44

59. shows the input, p, and output, q, for a linear function q. a. Fill in
the missing values of the table. b. Write the linear function k.

p 0.5 0.8 12 b

q 400 700 a 1,000,000

60. Graph the linear function f on a domain of [–10, 10] for the
function whose slope is

and y-intercept is

. Label the points for the input values of –10 and 10.
61. Graph the linear function f on a domain of [–0.1, 0.1] for the

function whose slope is 75 and y-intercept is –22.5. Label the points
for the input values of –0.1 and 0.1.

62. Graph the linear function f where

on the same set of axes on a domain of [–4, 4] for the following
values of a and b.
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63. Find the value of x if a linear function goes through the following
points and has the following slope:

64. Find the value of y if a linear function goes through the
following points and has the following slope:

65. Find the equation of the line that passes through the following
points:

and

66. Find the equation of the line that passes through the following
points:

and

67. Find the equation of the line that passes through the following
points:

and

68. At noon, a barista notices that she has $20 in her tip jar. If she
makes an average of $0.50 from each customer, how much will she
have in her tip jar if she serves n more customers during her shift?

69. A gym membership with two personal training sessions costs
$125, while gym membership with five personal training sessions
costs $260. What is cost per session?

70. A clothing business finds there is a linear relationship between
the number of shirts, n, it can sell and the price, p, it can charge
per shirt. In particular, historical data shows that 1,000 shirts can
be sold at a price of $30, while 3,000 shirts can be sold at a price
of $22. Find a linear equation in the form

that gives the price p they can charge for n shirts.
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71. A phone company charges for service according to the formula:

, where n is the number of minutes talked, and

is the monthly charge, in dollars. Find and interpret the rate of
change and initial value.

72. A farmer finds there is a linear relationship between the
number of bean stalks, n, she plants and the yield, y, each plant
produces. When she plants 30 stalks, each plant yields 30 oz of
beans. When she plants 34 stalks, each plant produces 28 oz of
beans. Find a linear relationships in the form

that gives the yield when n stalks are planted.
73. A city’s population in the year 1960 was 287,500. In 1989 the

population was 275,900. Compute the rate of growth of the
population and make a statement about the population rate of
change in people per year.

74. A town’s population has been growing linearly. In 2003, the
population was 45,000, and the population has been growing by
1,700 people each year. Write an equation,

, for the population t years after 2003.
75. Suppose that average annual income (in dollars) for the years

1990 through 1999 is given by the linear function:

, where x is the number of years after 1990. Which of the following
interprets the slope in the context of the problem?

a. As of 1990, average annual income was $23,286.
b. In the ten-year period from 1990–1999, average annual income
increased by a total of $1,054.
c. Each year in the decade of the 1990s, average annual income
increased by $1,054.
d. Average annual income rose to a level of $23,286 by the end of
1999.

76. When temperature is 0 degrees Celsius, the Fahrenheit
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temperature is 32. When the Celsius temperature is 100, the
corresponding Fahrenheit temperature is 212. Express the
Fahrenheit temperature as a linear function of C, the Celsius
temperature,

.
a. Find the rate of change of Fahrenheit temperature for each unit

change temperature of Celsius.
b. Find and interpret

.
c. Find and interpret

.
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PART XVII

GRAPHS OF LINEAR
FUNCTIONS
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119. Introduction to Graphs of
Linear Functions

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Graph linear functions.
• Write the equation for a linear function from the

graph of a line.
• Given the equations of two lines, determine

whether their graphs are parallel or perpendicular.
• Write the equation of a line parallel or

perpendicular to a given line.
• Solve a system of linear equations.

Two competing telephone companies offer different payment plans.
The two plans charge the same rate per long distance minute, but
charge a different monthly flat fee. A consumer wants to determine
whether the two plans will ever cost the same amount for a given
number of long distance minutes used. The total cost of each
payment plan can be represented by a linear function. To solve the
problem, we will need to compare the functions. In this section, we
will consider methods of comparing functions using graphs.
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120. Graph linear functions

In Linear Functions, we saw that that the graph of a linear function
is a straight line. We were also able to see the points of the function
as well as the initial value from a graph. By graphing two functions,
then, we can more easily compare their characteristics.

There are three basic methods of graphing linear functions. The
first is by plotting points and then drawing a line through the points.
The second is by using the y-intercept and slope. And the third
is by using transformations of the identity function

.

Graphing a Function by Plotting Points

To find points of a function, we can choose input values, evaluate
the function at these input values, and calculate output values. The
input values and corresponding output values form coordinate
pairs. We then plot the coordinate pairs on a grid. In general, we
should evaluate the function at a minimum of two inputs in order
to find at least two points on the graph. For example, given the
function,

, we might use the input values 1 and 2. Evaluating the function for
an input value of 1 yields an output value of 2, which is represented
by the point (1, 2). Evaluating the function for an input value of 2
yields an output value of 4, which is represented by the point (2, 4).
Choosing three points is often advisable because if all three points
do not fall on the same line, we know we made an error.
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How To: Given a linear function, graph
by plotting points.

1. Choose a minimum of two input values.
2. Evaluate the function at each input value.
3. Use the resulting output values to identify

coordinate pairs.
4. Plot the coordinate pairs on a grid.
5. Draw a line through the points.

Example 1: Graphing by Plotting Points

Graph

by plotting points.
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Solution

Begin by choosing input values. This function includes
a fraction with a denominator of 3, so let’s choose
multiples of 3 as input values. We will choose 0, 3, and 6.

Evaluate the function at each input value, and use the
output value to identify coordinate pairs.

Plot the coordinate pairs and draw a line through the
points. Figure 1 shows the graph of the function

.
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Figure 1

Analysis of the Solution

The graph of the function is a line as expected for a linear function.
In addition, the graph has a downward slant, which indicates a
negative slope. This is also expected from the negative constant rate
of change in the equation for the function.
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Try It 1

Graph

by plotting points.

Solution

Graphing a Linear Function Using y-intercept
and Slope

Another way to graph linear functions is by using specific
characteristics of the function rather than plotting points. The first
characteristic is its y-intercept, which is the point at which the
input value is zero. To find the y-intercept, we can set x = 0 in the
equation.

The other characteristic of the linear function is its slope m,
which is a measure of its steepness. Recall that the slope is the rate
of change of the function. The slope of a function is equal to the
ratio of the change in outputs to the change in inputs. Another way
to think about the slope is by dividing the vertical difference, or
rise, by the horizontal difference, or run. We encountered both the
y-intercept and the slope in Linear Functions.

Let’s consider the following function.

The slope is

. Because the slope is positive, we know the graph will slant upward
from left to right. The y-intercept is the point on the graph when
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x = 0. The graph crosses the y-axis at (0, 1). Now we know the slope
and the y-intercept. We can begin graphing by plotting the point
(0, 1) We know that the slope is rise over run,

. From our example, we have

, which means that the rise is 1 and the run is 2. So starting from
our y-intercept (0, 1), we can rise 1 and then run 2, or run 2 and
then rise 1. We repeat until we have a few points, and then we draw
a line through the points as shown in Figure 2.

Figure 2
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A General Note: Graphical
Interpretation of a Linear Function

In the equation

• b is the y-intercept of the graph and indicates
the point (0, b) at which the graph crosses the
y-axis.

• m is the slope of the line and indicates the
vertical displacement (rise) and horizontal
displacement (run) between each successive pair
of points. Recall the formula for the slope:

Q & A

Do all linear functions have y-intercepts?

Yes. All linear functions cross the y-axis and therefore
have y-intercepts. (Note: A vertical line parallel to the y-
axis does not have a y-intercept, but it is not a function.)
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How To: Given the equation for a linear
function, graph the function using the
y-intercept and slope.

1. Evaluate the function at an input value of zero
to find the y-intercept.

2. Identify the slope as the rate of change of the
input value.

3. Plot the point represented by the y-intercept.
4. Use

to determine at least two more points on the line.
5. Sketch the line that passes through the points.

Example 2: Graphing by Using the
y-intercept and Slope

Graph

using the y-intercept and slope.
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Solution

Evaluate the function at x = 0 to find the y-intercept.
The output value when x = 0 is 5, so the graph will cross
the y-axis at (0, 5).

According to the equation for the function, the slope
of the line is

. This tells us that for each vertical decrease in the “rise”
of –2 units, the “run” increases by 3 units in the
horizontal direction. We can now graph the function by
first plotting the y-intercept in Figure 3. From the initial
value (0, 5) we move down 2 units and to the right 3
units. We can extend the line to the left and right by
repeating, and then draw a line through the points.

868 | Graph linear functions



Figure 3

Analysis of the Solution

The graph slants downward from left to right, which means it has a
negative slope as expected.

Try It 2

Find a point on the graph we drew in Example 2 that has
a negative x-value.
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Solution

Graphing a Linear Function Using
Transformations

Another option for graphing is to use transformations of the
identity function

. A function may be transformed by a shift up, down, left, or right.
A function may also be transformed using a reflection, stretch, or
compression.

Vertical Stretch or Compression

In the equation

, the m is acting as the vertical stretch or compression of the
identity function. When m is negative, there is also a vertical
reflection of the graph. Notice in Figure 4 that multiplying the
equation of

by m stretches the graph of f by a factor of m units if m > 1 and
compresses the graph of f by a factor of m units if 0 < m < 1. This
means the larger the absolute value of m, the steeper the slope.
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Figure 4. Vertical stretches and compressions and reflections on
the function

.

Vertical Shift

In

, the b acts as the vertical shift, moving the graph up and down
without affecting the slope of the line. Notice in Figure 5 that adding
a value of b to the equation of

shifts the graph of f a total of b units up if b is positive and |b| units
down if b is negative.
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Figure 5. This graph illustrates vertical shifts of the function

.

Using vertical stretches or compressions along with vertical shifts is
another way to look at identifying different types of linear functions.
Although this may not be the easiest way to graph this type of
function, it is still important to practice each method.

How To: Given the equation of a linear
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function, use transformations to graph
the linear function in the form

.

1. Graph

.
2. Vertically stretch or compress the graph by a

factor m.
3. Shift the graph up or down b units.

Example 3: Graphing by Using
Transformations

Graph

using transformations.
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Solution

The equation for the function shows that

so the identity function is vertically compressed by

. The equation for the function also shows that b = –3 so
the identity function is vertically shifted down 3 units.
First, graph the identity function, and show the vertical
compression.

Figure 6. The function, y = x, compressed by a factor
of

.
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Then show the vertical shift.

Figure 7. The function

, shifted down 3 units.

Try It 3

Graph

, using transformations.

Solution
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Q & A

In Example 3, could we have sketched the graph by
reversing the order of the transformations?

No. The order of the transformations follows the order
of operations. When the function is evaluated at a given
input, the corresponding output is calculated by following
the order of operations. This is why we performed the
compression first. For example, following the order: Let
the input be 2.
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121. Write the equation for a
linear function from the
graph of a line

Recall that in Linear Functions, we wrote the equation for a linear
function from a graph. Now we can extend what we know about
graphing linear functions to analyze graphs a little more closely.
Begin by taking a look at Figure 8. We can see right away that the
graph crosses the y-axis at the point (0, 4) so this is the y-intercept.

Figure 8

Write the equation for a linear
function from the graph of a



Then we can calculate the slope by finding the rise and run. We can
choose any two points, but let’s look at the point (–2, 0). To get from
this point to the y-intercept, we must move up 4 units (rise) and to
the right 2 units (run). So the slope must be

Substituting the slope and y-intercept into the slope-intercept form
of a line gives

How To: Given a graph of linear
function, find the equation to describe
the function.

1. Identify the y-intercept of an equation.
2. Choose two points to determine the slope.
3. Substitute the y-intercept and slope into the

slope-intercept form of a line.
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Example 4: Matching Linear Functions
to Their Graphs

Match each equation of the linear functions with one
of the lines in Figure 9.

1.
2.
3.
4.

Figure 9
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Solution

Analyze the information for each function.

1. This function has a slope of 2 and a y-intercept
of 3. It must pass through the point (0, 3) and slant
upward from left to right. We can use two points
to find the slope, or we can compare it with the
other functions listed. Function g has the same
slope, but a different y-intercept. Lines I and III
have the same slant because they have the same
slope. Line III does not pass through (0, 3) so
f must be represented by line I.

2. This function also has a slope of 2, but a
y-intercept of –3. It must pass through the point
(0, –3) and slant upward from left to right. It must
be represented by line III.

3. This function has a slope of –2 and a y-intercept
of 3. This is the only function listed with a
negative slope, so it must be represented by line
IV because it slants downward from left to right.

4. This function has a slope of

and a y-intercept of 3. It must pass through the
point (0, 3) and slant upward from left to right.
Lines I and II pass through (0, 3), but the slope of
j is less than the slope of f so the line for j must be
flatter. This function is represented by Line II.
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Now we can re-label the lines as in Figure 10.

Figure 10

Finding the x-intercept of a Line

So far, we have been finding the y-intercepts of a function: the point
at which the graph of the function crosses the y-axis. A function
may also have an x-intercept, which is the x-coordinate of the point
where the graph of the function crosses the x-axis. In other words,
it is the input value when the output value is zero.

To find the x-intercept, set a function f(x) equal to zero and solve
for the value of x. For example, consider the function shown.

Write the equation for a linear function from the graph of a line | 881



Set the function equal to 0 and solve for x.

The graph of the function crosses the x-axis at the point (2, 0).

Q & A

Do all linear functions have x-intercepts?

No. However, linear functions of the form y = c, where c
is a nonzero real number are the only examples of linear
functions with no x-intercept. For example, y = 5 is a
horizontal line 5 units above the x-axis. This function has
no x-intercepts.

Figure 11
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A General Note: x-intercept

The x-intercept of the function is value of x when f(x)
= 0. It can be solved by the equation 0 = mx + b.

Example 5: Finding an x-intercept

Find the x-intercept of

.

Solution

Set the function equal to zero to solve for x.
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The graph crosses the x-axis at the point (6, 0).

Analysis of the Solution

A graph of the function is shown in Figure 12. We can see that the
x-intercept is (6, 0) as we expected.

Figure 12. The graph of the linear function
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.

Try It 4

Find the x-intercept of

.

Solution

Describing Horizontal and Vertical Lines

There are two special cases of lines on a graph—horizontal and
vertical lines. A horizontal line indicates a constant output, or
y-value. In Figure 13, we see that the output has a value of 2 for
every input value. The change in outputs between any two points,
therefore, is 0. In the slope formula, the numerator is 0, so the
slope is 0. If we use m = 0 in the equation

, the equation simplifies to

. In other words, the value of the function is a constant. This graph
represents the function

.
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Figure 13. A horizontal line representing the function

.

Figure 14

A vertical line indicates a constant input, or x-value. We can see
that the input value for every point on the line is 2, but the output
value varies. Because this input value is mapped to more than one
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output value, a vertical line does not represent a function. Notice
that between any two points, the change in the input values is zero.
In the slope formula, the denominator will be zero, so the slope of a
vertical line is undefined.

Notice that a vertical line, such as the one in Figure 15, has an
x-intercept, but no y-intercept unless it’s the line x = 0. This graph
represents the line x = 2.

Figure 15. The vertical line, x = 2, which does not represent a
function.
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A General Note: Horizontal and
Vertical Lines

Lines can be horizontal or vertical.

A horizontal line is a line defined by an equation in
the form

.

A vertical line is a line defined by an equation in the
form

.

Example 6: Writing the Equation of a
Horizontal Line

Write the equation of the line graphed in Figure 16.
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Figure 16
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Solution

For any x-value, the y-value is –4, so the equation is
y = –4.

Example 7: Writing the Equation of a
Vertical Line

Write the equation of the line graphed in Figure 17.
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Figure 17

Solution

The constant x-value is 7, so the equation is x = 7.
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122. Given the equations of
two lines, determine whether
their graphs are parallel or
perpendicular

The two lines in Figure 18 are parallel lines: they will never
intersect. Notice that they have exactly the same steepness, which
means their slopes are identical. The only difference between the
two lines is the y-intercept. If we shifted one line vertically toward
the y-intercept of the other, they would become the same line.

Figure 18. Parallel lines.
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Figure 19.

We can determine from their equations whether two lines are
parallel by comparing their slopes. If the slopes are the same and
the y-intercepts are different, the lines are parallel. If the slopes are
different, the lines are not parallel.

Unlike parallel lines, perpendicular lines do intersect. Their
intersection forms a right, or 90-degree, angle. The two lines in
Figure 20 are perpendicular.

Figure 20. Perpendicular lines.
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Perpendicular lines do not have the same slope. The slopes of
perpendicular lines are different from one another in a specific way.
The slope of one line is the negative reciprocal of the slope of the
other line. The product of a number and its reciprocal is 1. So, if

are negative reciprocals of one another, they can be multiplied
together to yield .

To find the reciprocal of a number, divide 1 by the number. So
the reciprocal of 8 is

, and the reciprocal of

is 8. To find the negative reciprocal, first find the reciprocal and
then change the sign.

As with parallel lines, we can determine whether two lines are
perpendicular by comparing their slopes, assuming that the lines
are neither horizontal nor perpendicular. The slope of each line
below is the negative reciprocal of the other so the lines are
perpendicular.

The product of the slopes is –1.

A General Note: Parallel and
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Perpendicular Lines

Two lines are parallel lines if they do not intersect.
The slopes of the lines are the same.

.
If and only if

and

, we say the lines coincide. Coincident lines are the
same line.

Two lines are perpendicular lines if they intersect at
right angles.

.

Example 8: Identifying Parallel and
Perpendicular Lines

Given the functions below, identify the functions
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whose graphs are a pair of parallel lines and a pair of
perpendicular lines.

Solutions

Parallel lines have the same slope. Because the
functions

and

each have a slope of 2, they represent parallel lines.
Perpendicular lines have negative reciprocal slopes.
Because −2 and

are negative reciprocals, the equations,

and

represent perpendicular lines.
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Analysis of the Solution

A graph of the lines is shown in Figure 21.

Figure 21. The graph shows that the lines

and

are parallel, and the lines

and

are perpendicular.
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123. Write the equation of a
line parallel or perpendicular
to a given line

If we know the equation of a line, we can use what we know about
slope to write the equation of a line that is either parallel or
perpendicular to the given line.

Writing Equations of Parallel Lines

Suppose for example, we are given the following equation.

We know that the slope of the line formed by the function is 3. We
also know that the y-intercept is (0, 1). Any other line with a slope
of 3 will be parallel to f(x). So the lines formed by all of the following
functions will be parallel to f(x).

Suppose then we want to write the equation of a line that is parallel
to f and passes through the point (1, 7). We already know that the
slope is 3. We just need to determine which value for b will give the
correct line. We can begin with the point-slope form of an equation
for a line, and then rewrite it in the slope-intercept form.

So
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is parallel to

and passes through the point (1, 7).

How To: Given the equation of a
function and a point through which its
graph passes, write the equation of a line
parallel to the given line that passes
through the given point.

1. Find the slope of the function.
2. Substitute the given values into either the

general point-slope equation or the slope-
intercept equation for a line.

3. Simplify.

Example 9: Finding a Line Parallel to a
Given Line

Find a line parallel to the graph of
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that passes through the point (3, 0).

Solutions

The slope of the given line is 3. If we choose the
slope-intercept form, we can substitute m = 3, x = 3, and
f(x) = 0 into the slope-intercept form to find the
y-intercept.

The line parallel to f(x) that passes through (3, 0) is

.

Analysis of the Solution

We can confirm that the two lines are parallel by graphing them.
Figure 22 shows that the two lines will never intersect.
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Figure 22

Writing Equations of Perpendicular Lines

We can use a very similar process to write the equation for a line
perpendicular to a given line. Instead of using the same slope,
however, we use the negative reciprocal of the given slope. Suppose
we are given the following function:

The slope of the line is 2, and its negative reciprocal is

. Any function with a slope of
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will be perpendicular to f(x). So the lines formed by all of the
following functions will be perpendicular to f(x).

As before, we can narrow down our choices for a particular
perpendicular line if we know that it passes through a given point.
Suppose then we want to write the equation of a line that is
perpendicular to f(x) and passes through the point (4, 0). We already
know that the slope is

. Now we can use the point to find the y-intercept by substituting
the given values into the slope-intercept form of a line and solving
for b.

The equation for the function with a slope of

and a y-intercept of 2 is

.

So

is perpendicular to

and passes through the point (4, 0). Be aware that perpendicular
lines may not look obviously perpendicular on a graphing calculator
unless we use the square zoom feature.
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Q & A

A horizontal line has a slope of zero and a vertical
line has an undefined slope. These two lines are
perpendicular, but the product of their slopes is not –1.
Doesn’t this fact contradict the definition of
perpendicular lines?

No. For two perpendicular linear functions, the product
of their slopes is –1. However, a vertical line is not a
function so the definition is not contradicted.

How To: Given the equation of a
function and a point through which its
graph passes, write the equation of a line
perpendicular to the given line.

1. Find the slope of the function.
2. Determine the negative reciprocal of the slope.
3. Substitute the new slope and the values for

x and y from the coordinate pair provided into
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.
4. Solve for b.
5. Write the equation for the line.

Example 10: Finding the Equation of a
Perpendicular Line

Find the equation of a line perpendicular to

that passes through the point (3, 0).

Solution

The original line has slope m = 3, so the slope of the
perpendicular line will be its negative reciprocal, or

. Using this slope and the given point, we can find the
equation for the line.
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The line perpendicular to f(x) that passes through (3,
0) is

.

Analysis of the Solution

A graph of the two lines is shown in Figure 23.
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Figure 23

Try It 5

Given the function

, write an equation for the line passing through (0, 0) that is
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a. parallel to h(x)
b. perpendicular to h(x)

Solution

How To: Given two points on a line and
a third point, write the equation of the
perpendicular line that passes through the
point.

1. Determine the slope of the line passing through
the points.

2. Find the negative reciprocal of the slope.
3. Use the slope-intercept form or point-slope

form to write the equation by substituting the
known values.

4. Simplify.

Example 11: Finding the Equation of a
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Line Perpendicular to a Given Line
Passing through a Point

A line passes through the points (–2, 6) and (4, 5). Find
the equation of a perpendicular line that passes through
the point (4, 5).

Solution

From the two points of the given line, we can
calculate the slope of that line.

Find the negative reciprocal of the slope.

We can then solve for the y-intercept of the line
passing through the point (4, 5).
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The equation for the line that is perpendicular to the
line passing through the two given points and also
passes through point (4, 5) is

Try It 6

A line passes through the points, (–2, –15) and (2, –3). Find
the equation of a perpendicular line that passes through
the point, (6, 4).

Solution
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124. Solve a system of linear
equations

A system of linear equations includes two or more linear equations.
The graphs of two lines will intersect at a single point if they are not
parallel. Two parallel lines can also intersect if they are coincident,
which means they are the same line and they intersect at every
point. For two lines that are not parallel, the single point of
intersection will satisfy both equations and therefore represent the
solution to the system.

To find this point when the equations are given as functions,
we can solve for an input value so that

. In other words, we can set the formulas for the lines equal to one
another, and solve for the input that satisfies the equation.

Example 12: Finding a Point of
Intersection Algebraically

Find the point of intersection of the lines

and

.
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Solution

Set

.

This tells us the lines intersect when the input is

.

We can then find the output value of the intersection
point by evaluating either function at this input.

These lines intersect at the point

.

Analysis of the Solution

Looking at Figure 24, this result seems reasonable.
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Figure 24

Q & A

If we were asked to find the point of intersection of
two distinct parallel lines, should something in the
solution process alert us to the fact that there are no
solutions?
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Yes. After setting the two equations equal to one
another, the result would be the contradiction “0 = non-
zero real number”.

Try It 8

Using the graph in the Analysis of the Solution for
Example 12, identify the following for the function

:

a. y-intercept

b. x-intercept(s)

c. slope

d. Is

parallel or perpendicular to

(or neither)?

e. Is

an increasing or decreasing function (or
neither)?

f. Write a transformation description for

from the identity toolkit function
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.

Solution

Example 13: Finding a Break-Even Point

A company sells sports helmets. The company incurs
a one-time fixed cost for $250,000. Each helmet costs
$120 to produce, and sells for $140.

1. Find the cost function, C, to produce x helmets,
in dollars.

2. Find the revenue function, R, from the sales of
x helmets, in dollars.

3. Find the break-even point, the point of
intersection of the two graphs C and R.

Solution

1. The cost function in the sum of the fixed cost,
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$125,000, and the variable cost, $120 per helmet.

2. The revenue function is the total revenue from
the sale of helmets,

.
3. The break-even point is the point of

intersection of the graph of the cost and revenue
functions. To find the x-coordinate of the
coordinate pair of the point of intersection, set
the two equations equal, and solve for x.

To find , evaluate either the revenue or the
cost function at 12,500.

The break-even point is (12,500, 1,750,000).

Analysis of the Solution

This means if the company sells 12,500 helmets, they break even;
both the sales and cost incurred equaled 1.75 million dollars.
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Figure 25
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125. Key Concepts & Glossary

Key Concepts

• Linear functions may be graphed by plotting points or by using
the y-intercept and slope.

• Graphs of linear functions may be transformed by using shifts
up, down, left, or right, as well as through stretches,
compressions, and reflections.

• The y-intercept and slope of a line may be used to write the
equation of a line.

• The x-intercept is the point at which the graph of a linear
function crosses the x-axis.

• Horizontal lines are written in the form, f(x) = b.
• Vertical lines are written in the form, x = b.
• Parallel lines have the same slope.
• Perpendicular lines have negative reciprocal slopes, assuming

neither is vertical.
• A line parallel to another line, passing through a given point,

may be found by substituting the slope value of the line and
the x– and y-values of the given point into the equation,

, and using the b that results. Similarly, the point-slope form of
an equation can also be used.

• A line perpendicular to another line, passing through a given
point, may be found in the same manner, with the exception of
using the negative reciprocal slope.

• A system of linear equations may be solved setting the two
equations equal to one another and solving for x. The y-value
may be found by evaluating either one of the original equations
using this x-value.

• A system of linear equations may also be solved by finding the

Key Concepts & Glossary | 917



point of intersection on a graph.

Glossary

horizontal line
a line defined by

, where b is a real number. The slope of a horizontal line is 0.
parallel lines

two or more lines with the same slope
perpendicular lines

two lines that intersect at right angles and have slopes that are
negative reciprocals of each other

vertical line
a line defined by x = a, where a is a real number. The slope of a
vertical line is undefined.

x-intercept
the point on the graph of a linear function when the output
value is 0; the point at which the graph crosses the horizontal
axis
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126. Section Exercises

1. If the graphs of two linear functions are parallel, describe the
relationship between the slopes and the y-intercepts.

2. If the graphs of two linear functions are perpendicular, describe
the relationship between the slopes and the y-intercepts.

3. If a horizontal line has the equation

and a vertical line has the equation

, what is the point of intersection? Explain why what you found is
the point of intersection.

4. Explain how to find a line parallel to a linear function that
passes through a given point.

5. Explain how to find a line perpendicular to a linear function that
passes through a given point.

For the following exercises, determine whether the lines given by
the equations below are parallel, perpendicular, or neither parallel
nor perpendicular:

6.

7.

8.

9.

10.

11.
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For the following exercises, find the x- and y-intercepts of each
equation.

12.

13.

14.

15.

16.

17.

For the following exercises, use the descriptions of each pair of
lines given below to find the slopes of Line 1 and Line 2. Is each pair
of lines parallel, perpendicular, or neither?

18. Line 1: Passes through

and

Line 2: Passes through

and

19. Line 1: Passes through

and

Line 2: Passes through
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and

20. Line 1: Passes through

and

Line 2: Passes through

and

21. Line 1: Passes through

and

Line 2: Passes through

and

22. Line 1: Passes through

and

Line 2: Passes through

and

23. Line 1: Passes through

and
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Line 2: Passes through

and

24. Write an equation for a line parallel to

and passing through the point

.
25. Write an equation for a line parallel to

and passing through the point

.
26. Write an equation for a line perpendicular to

and passing through the point

.
27. Write an equation for a line perpendicular to

and passing through the point

.
28. Find the point at which the line

intersects the line

.
29. Find the point at which the line

intersects the line

.
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30. Use algebra to find the point at which the line

intersects the line

.
31. Use algebra to find the point at which the line

intersects the line

.
For the following exercises, the given linear equation with its

graph.

32.

33.
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34.

35.

36.

37.

For the following exercises, sketch a line with the given features.
38. An x-intercept of

and y-intercept of

39. An x-intercept of

and y-intercept of

40. A y-intercept of

and slope

41. A y-intercept of

and slope

42. Passing through the points

and

43. Passing through the points

and
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For the following exercises, sketch the graph of each equation.
44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59. If

Section Exercises | 925



is the transformation of

after a vertical compression by

, a shift right by 2, and a shift down by 4
a. Write an equation for

.
b. What is the slope of this line?
c. Find the y-intercept of this line.

60. If

is the transformation of

after a vertical compression by

, a shift left by 1, and a shift up by 3
a. Write an equation for

.
b. What is the slope of this line?
c. Find the y-intercept of this line.

For the following exercises, write the equation of the line shown
in the graph.
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61.
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62.
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63.

64.

For the following exercises, find the point of intersection of each
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pair of lines if it exists. If it does not exist, indicate that there is no
point of intersection.

65.

66.

67.

68.

69.

70. Find the equation of the line parallel to the line

through the point

.
71. Find the equation of the line perpendicular to the line

through the point

.
For the following exercises, use the functions

.
72. Find the point of intersection of the lines f and g.
73. Where is

greater than

? Where is
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greater than

?
74. A car rental company offers two plans for renting a car.
Plan A: $30 per day and $0.18 per mile

Plan B: $50 per day with free unlimited mileage
How many miles would you need to drive for plan B to save you
money?

75. A cell phone company offers two plans for minutes.
Plan A: $20 per month and $1 for every one hundred texts.

Plan B: $50 per month with free unlimited texts.
How many texts would you need to send per month for plan B to
save you money?

76. A cell phone company offers two plans for minutes.
Plan A: $15 per month and $2 for every 300 texts.

Plan B: $25 per month and $0.50 for every 100 texts.
How many texts would you need to send per month for plan B to
save you money?
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PART XVIII

COMPLEX NUMBERS
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127. Introduction to Complex
Numbers

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Express square roots of negative numbers as
multiples of i.

• Plot complex numbers on the complex plane.
• Add and subtract complex numbers.
• Multiply and divide complex numbers.

The study of mathematics continuously builds upon itself. Negative
integers, for example, fill a void left by the set of positive integers.
The set of rational numbers, in turn, fills a void left by the set of
integers. The set of real numbers fills a void left by the set of rational
numbers. Not surprisingly, the set of real numbers has voids as well.
For example, we still have no solution to equations such as

Our best guesses might be +2 or –2. But if we test +2 in this equation,
it does not work. If we test –2, it does not work. If we want to have
a solution for this equation, we will have to go farther than we have
so far. After all, to this point we have described the square root of a
negative number as undefined. Fortunately, there is another system
of numbers that provides solutions to problems such as these. In
this section, we will explore this number system and how to work
within it.
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128. Express square roots of
negative numbers as multiples
of i

We know how to find the square root of any positive real number. In
a similar way, we can find the square root of a negative number. The
difference is that the root is not real. If the value in the radicand is
negative, the root is said to be an imaginary number. The imaginary
number is defined as the square root of negative 1.

So, using properties of radicals,

We can write the square root of any negative number as a multiple
of i. Consider the square root of –25.

We use 5i and not

because the principal root of 25 is the positive root.

Figure 1

A complex number is the sum of a real number and an imaginary
number. A complex number is expressed in standard form when
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written a + bi where a is the real part and bi is the imaginary part.
For example,

is a complex number. So, too, is

.
Imaginary numbers are distinguished from real numbers because

a squared imaginary number produces a negative real number.
Recall, when a positive real number is squared, the result is a
positive real number and when a negative real number is squared,
again, the result is a positive real number. Complex numbers are a
combination of real and imaginary numbers.

A General Note: Imaginary and
Complex Numbers

A complex number is a number of the form

where

• a is the real part of the complex number.
• bi is the imaginary part of the complex number.

If

, then

is a real number. If
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and b is not equal to 0, the complex number is called an
imaginary number. An imaginary number is an even
root of a negative number.

How To: Given an imaginary number, express it in
standard form.

1. Write

as

.
2. Express

as i.
3. Write

in simplest form.
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Example 1: Expressing an Imaginary
Number in Standard Form

Express

in standard form.

Solution

In standard form, this is

.

Try It 1

Express
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in standard form.

Solution
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129. Plot complex numbers on
the complex plane

We cannot plot complex numbers on a number line as we might
real numbers. However, we can still represent them graphically.
To represent a complex number we need to address the two
components of the number. We use the complex plane, which is
a coordinate system in which the horizontal axis represents the
real component and the vertical axis represents the imaginary
component. Complex numbers are the points on the plane,
expressed as ordered pairs (a, b), where a represents the coordinate
for the horizontal axis and b represents the coordinate for the
vertical axis.
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Figure 2

Let’s consider the number

. The real part of the complex number is –2 and the imaginary
part is 3i. We plot the ordered pair

to represent the complex number

.
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A General Note: Complex Plane

Figure 3

In the complex plane, the horizontal axis is the real
axis, and the vertical axis is the imaginary axis.

How To: Given a complex number,
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represent its components on the complex
plane.

1. Determine the real part and the imaginary part
of the complex number.

2. Move along the horizontal axis to show the real
part of the number.

3. Move parallel to the vertical axis to show the
imaginary part of the number.

4. Plot the point.

Example 2: Plotting a Complex Number
on the Complex Plane

Plot the complex number

on the complex plane.
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Solution

The real part of the complex number is 3, and the
imaginary part is –4i. We plot the ordered pair

.

Figure 4
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Try It 2

Plot the complex number

on the complex plane.

Solution
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130. Add and subtract
complex numbers

Just as with real numbers, we can perform arithmetic operations
on complex numbers. To add or subtract complex numbers, we
combine the real parts and combine the imaginary parts.

A General Note: Addition and
Subtraction of Complex Numbers

Adding complex numbers:

Subtracting complex numbers:

How To: Given two complex numbers,
find the sum or difference.

1. Identify the real and imaginary parts of each

Add and subtract complex
numbers | 947



number.
2. Add or subtract the real parts.
3. Add or subtract the imaginary parts.

Example 3: Adding Complex Numbers

Add

and

.

Solution

We add the real parts and add the imaginary parts.
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Try It 3

Subtract

from

.

Solution
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131. Multiply and divide
complex numbers

Multiplying Complex Numbers

Multiplying complex numbers is much like multiplying binomials.
The major difference is that we work with the real and imaginary
parts separately.

Example 4: Multiplying a Complex
Number by a Real Number

Figure 5

Let’s begin by multiplying a complex number by a real
number. We distribute the real number just as we would
with a binomial. So, for example,
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How To: Given a complex number and a
real number, multiply to find the product.

1. Use the distributive property.
2. Simplify.

Example 5: Multiplying a Complex
Number by a Real Number

Find the product

.

Solution

Distribute the 4.
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Try It 4

Find the product

.

Solution

Multiplying Complex Numbers Together

Now, let’s multiply two complex numbers. We can use either the
distributive property or the FOIL method. Recall that FOIL is an
acronym for multiplying First, Outer, Inner, and Last terms together.
Using either the distributive property or the FOIL method, we get

Because

, we have

To simplify, we combine the real parts, and we combine the
imaginary parts.
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How To: Given two complex numbers,
multiply to find the product.

1. Use the distributive property or the FOIL
method.

2. Simplify.

Example 6: Multiplying a Complex
Number by a Complex Number

Multiply

.
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Solution

Use

Try It 5

Multiply

.

Solution

Dividing Complex Numbers

Division of two complex numbers is more complicated than
addition, subtraction, and multiplication because we cannot divide
by an imaginary number, meaning that any fraction must have a
real-number denominator. We need to find a term by which we can
multiply the numerator and the denominator that will eliminate the
imaginary portion of the denominator so that we end up with a
real number as the denominator. This term is called the complex
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conjugate of the denominator, which is found by changing the sign
of the imaginary part of the complex number. In other words, the
complex conjugate of

is

.
Note that complex conjugates have a reciprocal relationship: The

complex conjugate of

is

, and the complex conjugate of

is

. Further, when a quadratic equation with real coefficients has
complex solutions, the solutions are always complex conjugates of
one another.

Suppose we want to divide

by

, where neither a nor b equals zero. We first write the division as a
fraction, then find the complex conjugate of the denominator, and
multiply.

Multiply the numerator and denominator by the complex conjugate
of the denominator.

Apply the distributive property.
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Simplify, remembering that

.

A General Note: The Complex
Conjugate

The complex conjugate of a complex number

is

. It is found by changing the sign of the imaginary part
of the complex number. The real part of the number is
left unchanged.

• When a complex number is multiplied by its
complex conjugate, the result is a real number.

• When a complex number is added to its
complex conjugate, the result is a real number.
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Example 7: Finding Complex
Conjugates

Find the complex conjugate of each number.

1.
2.

Solution

1. The number is already in the form .

The complex conjugate is

, or

.
2. We can rewrite this number in the form

as

. The complex conjugate is
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, or

. This can be written simply as

.

Analysis of the Solution

Although we have seen that we can find the complex conjugate of
an imaginary number, in practice we generally find the complex
conjugates of only complex numbers with both a real and an
imaginary component. To obtain a real number from an imaginary
number, we can simply multiply by i.

How To: Given two complex numbers,
divide one by the other.

1. Write the division problem as a fraction.
2. Determine the complex conjugate of the

denominator.
3. Multiply the numerator and denominator of the

fraction by the complex conjugate of the
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denominator.
4. Simplify.

Example 8: Dividing Complex Numbers

Divide

by

.

Solution

We begin by writing the problem as a fraction.

Then we multiply the numerator and denominator by
the complex conjugate of the denominator.
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To multiply two complex numbers, we expand the
product as we would with polynomials (the process
commonly called FOIL).

Note that this expresses the quotient in standard
form.

Example 9: Substituting a Complex
Number into a Polynomial Function

Let

. Evaluate

.
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Solution

Figure 6

Substitute

into the function

and simplify.

Analysis of the Solution

We write

. Notice that the input is

and the output is

.
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Try It 6

Let

. Evaluate

.

Solution

Example 10: Substituting an Imaginary
Number in a Rational Function

Let

. Evaluate

.
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Solution

Substitute

and simplify.

Try It 7

Let

. Evaluate

.

Solution
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Simplifying Powers of i

The powers of i are cyclic. Let’s look at what happens when we raise
i to increasing powers.

We can see that when we get to the fifth power of i, it is equal to
the first power. As we continue to multiply i by itself for increasing
powers, we will see a cycle of 4. Let’s examine the next 4 powers of
i.

Example 11: Simplifying Powers of i

Evaluate

.
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Solution

Since

, we can simplify the problem by factoring out as many
factors of

as possible. To do so, first determine how many times 4
goes into 35:

.

Q & A

Can we write

in other helpful ways?

As we saw in Example 11, we reduced

to
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by dividing the exponent by 4 and using the remainder to
find the simplified form. But perhaps another
factorization of

may be more useful. The table below shows some other
possible factorizations.

Factorizati
on of

Reduced
form

Simplified
form

Each of these will eventually result in the answer we
obtained above but may require several more steps than
our earlier method.
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132. Key Concepts & Glossary

Key Concepts

• The square root of any negative number can be written as a
multiple of i.

• To plot a complex number, we use two number lines, crossed
to form the complex plane. The horizontal axis is the real axis,
and the vertical axis is the imaginary axis.

• Complex numbers can be added and subtracted by combining
the real parts and combining the imaginary parts.

• Complex numbers can be multiplied and divided.
• To multiply complex numbers, distribute just as with

polynomials.
• To divide complex numbers, multiply both the numerator and

denominator by the complex conjugate of the denominator to
eliminate the complex number from the denominator.

• The powers of i are cyclic, repeating every fourth one.

Glossary

complex conjugate
the complex number in which the sign of the imaginary part is
changed and the real part of the number is left unchanged;
when added to or multiplied by the original complex number,
the result is a real number

complex number
the sum of a real number and an imaginary number, written in
the standard form a + bi, where a is the real part, and bi is the
imaginary part
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complex plane
a coordinate system in which the horizontal axis is used to
represent the real part of a complex number and the vertical
axis is used to represent the imaginary part of a complex
number

imaginary number
a number in the form bi where
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133. Section Exercises

1. Explain how to add complex numbers.
2. What is the basic principle in multiplication of complex

numbers?
3. Give an example to show the product of two imaginary

numbers is not always imaginary.
4. What is a characteristic of the plot of a real number in the

complex plane?
For the following exercises, evaluate the algebraic expressions.
5.

, evaluate

.
6.

, evaluate

.
7.

, evaluate

.
8.

, evaluate

.
9.
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, evaluate

.
10.

, evaluate

.
For the following exercises, determine the number of real and

nonreal solutions for each quadratic function shown.
11.

12.
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For the following exercises, plot the complex numbers on the
complex plane.

13.

14.

15. i
16.

For the following exercises, perform the indicated operation and
express the result as a simplified complex number.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
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28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

972 | Section Exercises



For the following exercises, use a calculator to help answer the
questions.

44. Evaluate

for

Predict the value if

.
45. Evaluate

for

Predict the value if

.
46. Evaluate

for

. Predict the value for

.
47. Show that a solution of

is

.
48. Show that a solution of

is

.
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For the following exercises, evaluate the expressions, writing the
result as a simplified complex number.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

974 | Section Exercises



PART XIX

DIVIDING POLYNOMIALS
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134. Introduction to Dividing
Polynomials

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Use long division to divide polynomials.
• Use synthetic division to divide polynomials.

Figure 1. Lincoln Memorial, Washington, D.C. (credit: Ron Cogswell, Flickr)

The exterior of the Lincoln Memorial in Washington, D.C., is a large
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rectangular solid with length 61.5 meters (m), width 40 m, and height
30 m.1 We can easily find the volume using elementary geometry.

So the volume is 73,800 cubic meters

. Suppose we knew the volume, length, and width. We could divide
to find the height.

As we can confirm from the dimensions above, the height is 30 m.
We can use similar methods to find any of the missing dimensions.
We can also use the same method if any or all of the measurements
contain variable expressions. For example, suppose the volume of
a rectangular solid is given by the polynomial

. The length of the solid is given by 3x; the width is given by

. To find the height of the solid, we can use polynomial division,
which is the focus of this section.

1. National Park Service. "Lincoln Memorial Building
Statistics." http://www.nps.gov/linc/historyculture/
lincoln-memorial-building-statistics.htm. Accessed 4/
3/2014
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135. Use long division to
divide polynomials

We are familiar with the long division algorithm for ordinary
arithmetic. We begin by dividing into the digits of the dividend that
have the greatest place value. We divide, multiply, subtract, include
the digit in the next place value position, and repeat. For example,
let’s divide 178 by 3 using long division.

Another way to look at the solution is as a sum of parts. This
should look familiar, since it is the same method used to check
division in elementary arithmetic.

We call this the Division Algorithm and will discuss it more formally
after looking at an example.

Division of polynomials that contain more than one term has
similarities to long division of whole numbers. We can write a
polynomial dividend as the product of the divisor and the quotient
added to the remainder. The terms of the polynomial division
correspond to the digits (and place values) of the whole number
division. This method allows us to divide two polynomials. For
example, if we were to divide
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by

using the long division algorithm, it would look like this:

We have found

or

We can identify the dividend, the divisor, the quotient, and the
remainder.

Writing the result in this manner illustrates the Division
Algorithm.
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A General Note: The Division
Algorithm

The Division Algorithm states that, given a
polynomial dividend

and a non-zero polynomial divisor

where the degree of

is less than or equal to the degree of

, there exist unique polynomials

and

such that

is the quotient and

is the remainder. The remainder is either equal to zero
or has degree strictly less than

.

If

, then
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divides evenly into

. This means that, in this case, both

and

are factors of

.

How To: Given a polynomial and a
binomial, use long division to divide the
polynomial by the binomial.

1. Set up the division problem.
2. Determine the first term of the quotient by

dividing the leading term of the dividend by the
leading term of the divisor.

3. Multiply the answer by the divisor and write it
below the like terms of the dividend.

4. Subtract the bottom binomial from the top
binomial.

5. Bring down the next term of the dividend.
6. Repeat steps 2–5 until reaching the last term of
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the dividend.
7. If the remainder is non-zero, express as a

fraction using the divisor as the denominator.

Example 1: Using Long Division to
Divide a Second-Degree Polynomial

Divide

by

.

Solution
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The quotient is

. The remainder is 0. We write the result as

or

Analysis of the Solution

This division problem had a remainder of 0. This tells us that the
dividend is divided evenly by the divisor, and that the divisor is a
factor of the dividend.
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Example 2: Using Long Division to
Divide a Third-Degree Polynomial

Divide

by

.

Solution

There is a remainder of 1. We can express the result
as:
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Analysis of the Solution

We can check our work by using the Division Algorithm to rewrite
the solution. Then multiply.

Notice, as we write our result,

• the dividend is

• the divisor is

• the quotient is

• the remainder is 1

Try It 1

Divide

by

.

Solution
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136. Use synthetic division to
divide polynomials

As we’ve seen, long division of polynomials can involve many steps
and be quite cumbersome. Synthetic division is a shorthand
method of dividing polynomials for the special case of dividing by a
linear factor whose leading coefficient is 1.

To illustrate the process, recall the example at the beginning of
the section.

Divide

by

using the long division algorithm.
The final form of the process looked like this:

There is a lot of repetition in the table. If we don’t write the
variables but, instead, line up their coefficients in columns under
the division sign and also eliminate the partial products, we already
have a simpler version of the entire problem.
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Synthetic division carries this simplification even a few more
steps. Collapse the table by moving each of the rows up to fill any
vacant spots. Also, instead of dividing by 2, as we would in division
of whole numbers, then multiplying and subtracting the middle
product, we change the sign of the “divisor” to –2, multiply and add.
The process starts by bringing down the leading coefficient.

We then multiply it by the “divisor” and add, repeating this
process column by column, until there are no entries left. The
bottom row represents the coefficients of the quotient; the last
entry of the bottom row is the remainder. In this case, the quotient
is

and the remainder is –31. The process will be made more clear in
Example 3.

A General Note: Synthetic Division

Synthetic division is a shortcut that can be used when
the divisor is a binomial in the form x – k. In synthetic
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division, only the coefficients are used in the division
process.

How To: Given two polynomials, use
synthetic division to divide.

1. Write k for the divisor.
2. Write the coefficients of the dividend.
3. Bring the lead coefficient down.
4. Multiply the lead coefficient by k. Write the

product in the next column.
5. Add the terms of the second column.
6. Multiply the result by k. Write the product in

the next column.
7. Repeat steps 5 and 6 for the remaining columns.
8. Use the bottom numbers to write the quotient.

The number in the last column is the remainder
and has degree 0, the next number from the right
has degree 1, the next number from the right has
degree 2, and so on.
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Example 3: Using Synthetic Division to
Divide a Second-Degree Polynomial

Use synthetic division to divide

by

.

Solution

Begin by setting up the synthetic division. Write k and
the coefficients.

Bring down the lead coefficient. Multiply the lead
coefficient by k.
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Continue by adding the numbers in the second
column. Multiply the resulting number by k. Write the
result in the next column. Then add the numbers in the
third column.

The result is

. The remainder is 0. So

is a factor of the original polynomial.

Analysis of the Solution

Just as with long division, we can check our work by multiplying the
quotient by the divisor and adding the remainder.
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Example 4: Using Synthetic Division to
Divide a Third-Degree Polynomial

Use synthetic division to divide

by

.

Solution

The binomial divisor is

so

. Add each column, multiply the result by –2, and repeat
until the last column is reached.

The result is
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. The remainder is 0. Thus,

is a factor of

.

Analysis of the Solution

The graph of the polynomial function

in Figure 2 shows a zero at

. This confirms that

is a factor of

.
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Figure 2
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Example 5: Using Synthetic Division to
Divide a Fourth-Degree Polynomial

Use synthetic division to divide

by

.

Solution

Notice there is no x-term. We will use a zero as the
coefficient for that term.

The result is

.
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Try It 2

Use synthetic division to divide

by

.

Solution
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137. Use polynomial division
to solve application problems

Polynomial division can be used to solve a variety of application
problems involving expressions for area and volume. We looked at
an application at the beginning of this section. Now we will solve
that problem in the following example.

Example 6: Using Polynomial Division
in an Application Problem

The volume of a rectangular solid is given by the
polynomial

. The length of the solid is given by 3x and the width is
given by x – 2. Find the height of the solid.

Solution

There are a few ways to approach this problem. We
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need to divide the expression for the volume of the solid
by the expressions for the length and width. Let us
create a sketch.

Figure 3

We can now write an equation by substituting the
known values into the formula for the volume of a
rectangular solid.

To solve for h, first divide both sides by 3x.

Now solve for h using synthetic division.

The quotient is

and the remainder is 0. The height of the solid is
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.

Try It 3

The area of a rectangle is given by

. The width of the rectangle is given by x + 6. Find an
expression for the length of the rectangle.

Solution
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138. Key Concepts & Glossary

Key Equations

Division
Algorithm where

Key Concepts

• Polynomial long division can be used to divide a polynomial by
any polynomial with equal or lower degree.

• The Division Algorithm tells us that a polynomial dividend can
be written as the product of the divisor and the quotient added
to the remainder.

• Synthetic division is a shortcut that can be used to divide a
polynomial by a binomial in the form x – k.

• Polynomial division can be used to solve application problems,
including area and volume.

Glossary

Division Algorithm
given a polynomial dividend

and a non-zero polynomial divisor

1000 | Key Concepts & Glossary



where the degree of

is less than or equal to the degree of

, there exist unique polynomials

and

such that

where

is the quotient and

is the remainder. The remainder is either equal to zero or has
degree strictly less than

.
synthetic division

a shortcut method that can be used to divide a polynomial by a
binomial of the form x – k
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139. Section Exercises

1. If division of a polynomial by a binomial results in a remainder of
zero, what can be conclude?

2. If a polynomial of degree n is divided by a binomial of degree 1,
what is the degree of the quotient?

For the following exercises, use long division to divide. Specify the
quotient and the remainder.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

For the following exercises, use synthetic division to find the
quotient.
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
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30.

31.

32.

33.

34.

35.

36.

37.

For the following exercises, use the graph of the third-degree
polynomial and one factor to write the factored form of the
polynomial suggested by the graph. The leading coefficient is one.

38. Factor is

39. Factor is
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40. Factor is

41. Factor is
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42. Factor is

For the following exercises, use synthetic division to find the
quotient and remainder.

43.

44.
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45.

46.

47.

For the following exercises, use a calculator with CAS to answer
the questions.

48. Consider

with

. What do you expect the result to be if k = 4?
49. Consider

for

. What do you expect the result to be if k = 7?
50. Consider

for

. What do you expect the result to be if k = 4?
51. Consider

with

. What do you expect the result to be if k = 4?
52. Consider

with

Section Exercises | 1007



. What do you expect the result to be if k = 4?
For the following exercises, use synthetic division to determine

the quotient involving a complex number.
53.

54.

55.

56.

57.

For the following exercises, use the given length and area of a
rectangle to express the width algebraically.

58. Length is

, area is

.
59. Length is

, area is

60. Length is

, area is

For the following exercises, use the given volume of a box and its
length and width to express the height of the box algebraically.

61. Volume is
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, length is

, width is

.
62. Volume is

, length is

, width is

.
63. Volume is

, length is

, width is

.
64. Volume is

, length is 2, width is

.
For the following exercises, use the given volume and radius of a

cylinder to express the height of the cylinder algebraically.
65. Volume is

, radius is

.
66. Volume is

, radius is
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.
67. Volume is

, radius is

.

1010 | Section Exercises



PART XX

ZEROS OF POLYNOMIAL
FUNCTIONS
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140. Introduction to Zeros of
Polynomials

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Evaluate a polynomial using the Remainder
Theorem.

• Use the Factor Theorem to solve a polynomial
equation.

• Use the Rational Zero Theorem to find rational
zeros.

• Find zeros of a polynomial function.
• Use the Linear Factorization Theorem to find

polynomials with given zeros.
• Use Descartes’ Rule of Signs.
• Solve real-world applications of polynomial

equations

A new bakery offers decorated sheet cakes for children’s birthday
parties and other special occasions. The bakery wants the volume
of a small cake to be 351 cubic inches. The cake is in the shape of a
rectangular solid. They want the length of the cake to be four inches
longer than the width of the cake and the height of the cake to be
one-third of the width. What should the dimensions of the cake pan
be?

This problem can be solved by writing a cubic function and
solving a cubic equation for the volume of the cake. In this section,
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we will discuss a variety of tools for writing polynomial functions
and solving polynomial equations.
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141. Evaluate a polynomial
using the Remainder
Theorem

In the last section, we learned how to divide polynomials. We can
now use polynomial division to evaluate polynomials using the
Remainder Theorem. If the polynomial is divided by x – k, the
remainder may be found quickly by evaluating the polynomial
function at k, that is, f(k) Let’s walk through the proof of the
theorem.

Recall that the Division Algorithm states that, given a polynomial
dividend f(x) and a non-zero polynomial divisor d(x) where the
degree of d(x) is less than or equal to the degree of f(x), there exist
unique polynomials q(x) and r(x) such that

If the divisor, d(x), is x – k, this takes the form

Since the divisor x – k is linear, the remainder will be a constant, r.
And, if we evaluate this for x = k, we have

In other words, f(k) is the remainder obtained by dividing f(x) by x
– k.
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A General Note: The Remainder
Theorem

If a polynomial

is divided by x – k, then the remainder is the value

.

How To: Given a polynomial function

, evaluate

at

using the Remainder Theorem.

1. Use synthetic division to divide the polynomial
by

.
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2. The remainder is the value

.

Example 1: Using the Remainder
Theorem to Evaluate a Polynomial

Use the Remainder Theorem to evaluate

at

.

Solution

To find the remainder using the Remainder Theorem,
use synthetic division to divide the polynomial by
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.

The remainder is 25. Therefore,

.

Analysis of the Solution

We can check our answer by evaluating

.

Try It 1

Use the Remainder Theorem to evaluate

at

.

Solution
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142. Use the Factor Theorem
to solve a polynomial
equation

The Factor Theorem is another theorem that helps us analyze
polynomial equations. It tells us how the zeros of a polynomial are
related to the factors. Recall that the Division Algorithm tells us

.

If k is a zero, then the remainder r is

and

or

.
Notice, written in this form, x – k is a factor of

. We can conclude if k is a zero of

, then

is a factor of

.
Similarly, if

is a factor of

, then the remainder of the Division Algorithm
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is 0. This tells us that k is a zero.
This pair of implications is the Factor Theorem. As we will soon

see, a polynomial of degree n in the complex number system will
have n zeros. We can use the Factor Theorem to completely factor
a polynomial into the product of n factors. Once the polynomial has
been completely factored, we can easily determine the zeros of the
polynomial.

A General Note: The Factor Theorem

According to the Factor Theorem, k is a zero of

if and only if

is a factor of

.
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How To: Given a factor and a
third-degree polynomial, use the Factor
Theorem to factor the polynomial.

1. Use synthetic division to divide the polynomial
by

.
2. Confirm that the remainder is 0.
3. Write the polynomial as the product of

and the quadratic quotient.
4. If possible, factor the quadratic.
5. Write the polynomial as the product of factors.

Example 2: Using the Factor Theorem to
Solve a Polynomial Equation

Show that

is a factor of
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. Find the remaining factors. Use the factors to
determine the zeros of the polynomial.

Solutions

We can use synthetic division to show that

is a factor of the polynomial.

The remainder is zero, so

is a factor of the polynomial. We can use the Division
Algorithm to write the polynomial as the product of the
divisor and the quotient:

We can factor the quadratic factor to write the
polynomial as
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By the Factor Theorem, the zeros of

are –2, 3, and 5.

Try It 2

Use the Factor Theorem to find the zeros of

given that

is a factor of the polynomial.

Solution
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143. Use the Rational Zero
Theorem to find rational
zeros

Another use for the Remainder Theorem is to test whether a
rational number is a zero for a given polynomial. But first we need a
pool of rational numbers to test. The Rational Zero Theorem helps
us to narrow down the number of possible rational zeros using the
ratio of the factors of the constant term and factors of the leading
coefficient of the polynomial

Consider a quadratic function with two zeros,

and

.
By the Factor Theorem, these zeros have factors associated with

them. Let us set each factor equal to 0, and then construct the
original quadratic function absent its stretching factor.

Notice that two of the factors of the constant term, 6, are the
two numerators from the original rational roots: 2 and 3. Similarly,
two of the factors from the leading coefficient, 20, are the two
denominators from the original rational roots: 5 and 4.

We can infer that the numerators of the rational roots will always
be factors of the constant term and the denominators will be factors
of the leading coefficient. This is the essence of the Rational Zero
Theorem; it is a means to give us a pool of possible rational zeros.
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A General Note: The Rational Zero
Theorem

The Rational Zero Theorem states that, if the
polynomial

has integer coefficients, then every rational zero of

has the form

where p is a factor of the constant term

and q is a factor of the leading coefficient

.

When the leading coefficient is 1, the possible rational
zeros are the factors of the constant term.

How To: Given a polynomial function

, use the Rational Zero Theorem to find
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rational zeros.

1. Determine all factors of the constant term and
all factors of the leading coefficient.

2. Determine all possible values of

, where p is a factor of the constant term and q is a
factor of the leading coefficient. Be sure to include
both positive and negative candidates.

3. Determine which possible zeros are actual zeros
by evaluating each case of

.

Example 3: Listing All Possible Rational
Zeros

List all possible rational zeros of

.

1026 | Use the Rational Zero Theorem to find rational zeros



Solution

The only possible rational zeros of

are the quotients of the factors of the last term, –4, and
the factors of the leading coefficient, 2.

The constant term is –4; the factors of –4 are

.

The leading coefficient is 2; the factors of 2 are

.

If any of the four real zeros are rational zeros, then
they will be of one of the following factors of –4 divided
by one of the factors of 2.

Note that

and

, which have already been listed. So we can shorten our
list.
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Example 4: Using the Rational Zero
Theorem to Find Rational Zeros

Use the Rational Zero Theorem to find the rational
zeros of

.

Solution

The Rational Zero Theorem tells us that if

is a zero of

, then p is a factor of 1 and q is a factor of 2.

The factors of 1 are

and the factors of 2 are

and
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. The possible values for

are

and

. These are the possible rational zeros for the function.
We can determine which of the possible zeros are actual
zeros by substituting these values for x in

.

Of those,

are not zeros of

. 1 is the only rational zero of

.

Try It 3

Use the Rational Zero Theorem to find the rational zeros
of

Use the Rational Zero Theorem to find rational zeros | 1029



.

Solution
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144. Find zeros of a
polynomial function

The Rational Zero Theorem helps us to narrow down the list of
possible rational zeros for a polynomial function. Once we have
done this, we can use synthetic division repeatedly to determine all
of the zeros of a polynomial function.

How To: Given a polynomial function

, use synthetic division to find its zeros.

1. Use the Rational Zero Theorem to list all
possible rational zeros of the function.

2. Use synthetic division to evaluate a given
possible zero by synthetically dividing the
candidate into the polynomial. If the remainder is
0, the candidate is a zero. If the remainder is not
zero, discard the candidate.

3. Repeat step two using the quotient found with
synthetic division. If possible, continue until the
quotient is a quadratic.

4. Find the zeros of the quadratic function. Two
possible methods for solving quadratics are
factoring and using the quadratic formula.
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Example 5: Finding the Zeros of a
Polynomial Function with Repeated Real
Zeros

Find the zeros of

.

Solution

The Rational Zero Theorem tells us that if

is a zero of

, then p is a factor of –1 and q is a factor of 4.

The factors of –1 are

and the factors of 4 are

, and
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. The possible values for

are

, and

.
These are the possible rational zeros for the function.
We will use synthetic division to evaluate each possible
zero until we find one that gives a remainder of 0. Let’s
begin with 1.

Dividing by

gives a remainder of 0, so 1 is a zero of the function.
The polynomial can be written as

.
The quadratic is a perfect square.

can be written as

.
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We already know that 1 is a zero. The other zero will
have a multiplicity of 2 because the factor is squared. To
find the other zero, we can set the factor equal to 0.

The zeros of the function are 1 and

with multiplicity 2.

Analysis of the Solution

Look at the graph of the function f in Figure 1. Notice, at

, the graph bounces off the x-axis, indicating the even multiplicity
(2,4,6…) for the zero –0.5. At

, the graph crosses the x-axis, indicating the odd multiplicity (1,3,5…)
for the zero

.
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Figure 1
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145. Use the Fundamental
Theorem of Algebra

Now that we can find rational zeros for a polynomial function, we
will look at a theorem that discusses the number of complex zeros
of a polynomial function. The Fundamental Theorem of Algebra
tells us that every polynomial function has at least one complex
zero. This theorem forms the foundation for solving polynomial
equations.

Suppose f is a polynomial function of degree four, and

. The Fundamental Theorem of Algebra states that there is at least
one complex solution, call it

. By the Factor Theorem, we can write

as a product of

and a polynomial quotient. Since

is linear, the polynomial quotient will be of degree three. Now we
apply the Fundamental Theorem of Algebra to the third-degree
polynomial quotient. It will have at least one complex zero, call it

. So we can write the polynomial quotient as a product of

and a new polynomial quotient of degree two. Continue to apply the
Fundamental Theorem of Algebra until all of the zeros are found.
There will be four of them and each one will yield a factor of

.
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A General Note: The Fundamental
Theorem of Algebra states that, if f(x) is a
polynomial of degree n > 0, then f(x) has at
least one complex zero.

We can use this theorem to argue that, if

is a polynomial of degree

0\\" title="n>0\\" class="latex mathjax">, and a is a
non-zero real number, then

has exactly n linear factors

where

are complex numbers. Therefore,

has n roots if we allow for multiplicities.
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Q & A

Does every polynomial have at least one imaginary
zero?

No. A complex number is not necessarily imaginary.
Real numbers are also complex numbers.

Example 6: Finding the Zeros of a
Polynomial Function with Complex Zeros

Find the zeros of

.

Solution

The Rational Zero Theorem tells us that if

is a zero of
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, then p is a factor of 3 and q is a factor of 3.

The factors of 3 are

and

. The possible values for

, and therefore the possible rational zeros for the function, are

. We will use synthetic division to evaluate each possible zero until
we find one that gives a remainder of 0. Let’s begin with –3.

Dividing by

gives a remainder of 0, so –3 is a zero of the function. The
polynomial can be written as

We can then set the quadratic equal to 0 and solve to find the other
zeros of the function.

The zeros of

are –3 and
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.

Analysis of the Solution

Look at the graph of the function f. Notice that, at

, the graph crosses the x-axis, indicating an odd multiplicity (1)
for the zero

. Also note the presence of the two turning points. This means
that, since there is a 3rd degree polynomial, we are looking at the
maximum number of turning points. So, the end behavior of
increasing without bound to the right and decreasing without
bound to the left will continue. Thus, all the x-intercepts for the
function are shown. So either the multiplicity of

is 1 and there are two complex solutions, which is what we found,
or the multiplicity at

is three. Either way, our result is correct.
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Figure 2

Try It 4

Find the zeros of

.

Solution
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146. Use the Linear
Factorization Theorem to
find polynomials with given
zeros

A vital implication of the Fundamental Theorem of Algebra, as we
stated above, is that a polynomial function of degree n will have
n zeros in the set of complex numbers, if we allow for multiplicities.
This means that we can factor the polynomial function into
n factors. The Linear Factorization Theorem tells us that a
polynomial function will have the same number of factors as its
degree, and that each factor will be in the form (x – c), where c is a
complex number.

Let f be a polynomial function with real coefficients, and suppose

, is a zero of

. Then, by the Factor Theorem,

is a factor of

. For f to have real coefficients,

must also be a factor of

. This is true because any factor other than

, when multiplied by

, will leave imaginary components in the product. Only
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multiplication with conjugate pairs will eliminate the imaginary
parts and result in real coefficients. In other words, if a polynomial
function f with real coefficients has a complex zero

, then the complex conjugate

must also be a zero of

. This is called the Complex Conjugate Theorem.

A General Note: Complex Conjugate
Theorem

According to the Linear Factorization Theorem, a
polynomial function will have the same number of
factors as its degree, and each factor will be in the form

, where c is a complex number.

If the polynomial function f has real coefficients and a
complex zero in the form

, then the complex conjugate of the zero,

, is also a zero.
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How To: Given the zeros of a
polynomial function

and a point

on the graph of

, use the Linear Factorization Theorem to
find the polynomial function.

1. Use the zeros to construct the linear factors of
the polynomial.

2. Multiply the linear factors to expand the
polynomial.

3. Substitute

into the function to determine the leading
coefficient.

4. Simplify.
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Example 7: Using the Linear
Factorization Theorem to Find a
Polynomial with Given Zeros

Find a fourth degree polynomial with real coefficients
that has zeros of –3, 2, i, such that

.

Solution

Because

is a zero, by the Complex Conjugate Theorem

is also a zero. The polynomial must have factors of

, and

. Since we are looking for a degree 4 polynomial, and
now have four zeros, we have all four factors. Let’s begin
by multiplying these factors.
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We need to find a to ensure

. Substitute

and

into

.

So the polynomial function is

or

Analysis of the Solution

We found that both i and –i were zeros, but only one of these
zeros needed to be given. If i is a zero of a polynomial with real
coefficients, then –i must also be a zero of the polynomial because
–i is the complex conjugate of i.
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Q & A

If 2 + 3i were given as a zero of a polynomial with
real coefficients, would 2 – 3i also need to be a zero?

Yes. When any complex number with an imaginary
component is given as a zero of a polynomial with real
coefficients, the conjugate must also be a zero of the
polynomial.

Try It 5

Find a third degree polynomial with real coefficients that
has zeros of 5 and –2i such that

.

Solution
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147. Use Descartes’ Rule of
Signs

There is a straightforward way to determine the possible numbers
of positive and negative real zeros for any polynomial function. If the
polynomial is written in descending order, Descartes’ Rule of Signs
tells us of a relationship between the number of sign changes in

and the number of positive real zeros. For example, the polynomial
function below has one sign change.

This tells us that the function must have 1 positive real zero.
There is a similar relationship between the number of sign

changes in

and the number of negative real zeros.
In this case,

has 3 sign changes. This tells us that

could have 3 or 1 negative real zeros.

A General Note: Descartes’ Rule of
Signs

According to Descartes’ Rule of Signs, if we let
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be a polynomial function with real coefficients:

• The number of positive real zeros is either equal
to the number of sign changes of

or is less than the number of sign changes by an
even integer.

• The number of negative real zeros is either
equal to the number of sign changes of

or is less than the number of sign changes by an
even integer.

Example 7: Using Descartes’ Rule of
Signs

Use Descartes’ Rule of Signs to determine the possible
numbers of positive and negative real zeros for

.
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Solution

Begin by determining the number of sign changes.

There are two sign changes, so there are either 2 or 0
positive real roots. Next, we examine

to determine the number of negative real roots.

Again, there are two sign changes, so there are either 2 or 0 negative
real roots.

There are four possibilities, as we can see below.

Positive Real
Zeros

Negative Real
Zeros

Complex
Zeros

Total
Zeros

2 2 0 4

2 0 2 4

0 2 2 4

0 0 4 4
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Analysis of the Solution

We can confirm the numbers of positive and negative real roots by
examining a graph of the function. We can see from the graph in
Figure 3 that the function has 0 positive real roots and 2 negative
real roots.

Figure 3

Try It 6

Use Descartes’ Rule of Signs to determine the maximum
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possible numbers of positive and negative real zeros for

. Use a graph to verify the numbers of positive and negative
real zeros for the function.

Solution
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148. Solve real-world
applications of polynomial
equations

We have now introduced a variety of tools for solving polynomial
equations. Let’s use these tools to solve the bakery problem from
the beginning of the section.

Example 8: Solving Polynomial
Equations

A new bakery offers decorated sheet cakes for
children’s birthday parties and other special occasions.
The bakery wants the volume of a small cake to be 351
cubic inches. The cake is in the shape of a rectangular
solid. They want the length of the cake to be four inches
longer than the width of the cake and the height of the
cake to be one-third of the width. What should the
dimensions of the cake pan be?
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Solution

Begin by writing an equation for the volume of the
cake. The volume of a rectangular solid is given by

. We were given that the length must be four inches
longer than the width, so we can express the length of
the cake as

. We were given that the height of the cake is one-third
of the width, so we can express the height of the cake as

. Let’s write the volume of the cake in terms of width of
the cake.

Substitute the given volume into this equation.

Descartes’ rule of signs tells us there is one positive
solution. The Rational Zero Theorem tells us that the
possible rational zeros are

, and

. We can use synthetic division to test these possible
zeros. Only positive numbers make sense as dimensions
for a cake, so we need not test any negative values. Let’s
begin by testing values that make the most sense as
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dimensions for a small sheet cake. Use synthetic division
to check

.

Since 1 is not a solution, we will check

.

Since 3 is not a solution either, we will test

.

Synthetic division gives a remainder of 0, so 9 is a
solution to the equation. We can use the relationships
between the width and the other dimensions to
determine the length and height of the sheet cake pan.
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The sheet cake pan should have dimensions 13 inches
by 9 inches by 3 inches.

Try It 7

A shipping container in the shape of a rectangular solid
must have a volume of 84 cubic meters. The client tells the
manufacturer that, because of the contents, the length of
the container must be one meter longer than the width,
and the height must be one meter greater than twice the
width. What should the dimensions of the container be?

Solution
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149. Key Concepts & Glossary

Key Concepts

• To find

, determine the remainder of the polynomial

when it is divided by

.
• k is a zero of

if and only if

is a factor of

.
• Each rational zero of a polynomial function with integer

coefficients will be equal to a factor of the constant term
divided by a factor of the leading coefficient.

• When the leading coefficient is 1, the possible rational zeros
are the factors of the constant term.

• Synthetic division can be used to find the zeros of a polynomial
function.

• According to the Fundamental Theorem, every polynomial
function has at least one complex zero.

• Every polynomial function with degree greater than 0 has at
least one complex zero.

• Allowing for multiplicities, a polynomial function will have the
same number of factors as its degree. Each factor will be in the
form
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, where c is a complex number.
• The number of positive real zeros of a polynomial function is

either the number of sign changes of the function or less than
the number of sign changes by an even integer.

• The number of negative real zeros of a polynomial function is
either the number of sign changes of

or less than the number of sign changes by an even integer.
• Polynomial equations model many real-world scenarios.

Solving the equations is easiest done by synthetic division.

Glossary

Descartes’ Rule of Signs
a rule that determines the maximum possible numbers of
positive and negative real zeros based on the number of sign
changes of

and

Factor Theorem
k is a zero of polynomial function

if and only if

is a factor of

Fundamental Theorem of Algebra
a polynomial function with degree greater than 0 has at least
one complex zero

Linear Factorization Theorem
allowing for multiplicities, a polynomial function will have the
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same number of factors as its degree, and each factor will be in
the form

, where c is a complex number
Rational Zero Theorem

the possible rational zeros of a polynomial function have the
form

where p is a factor of the constant term and q is a factor of the
leading coefficient.

Remainder Theorem
if a polynomial

is divided by

, then the remainder is equal to the value
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150. Section Exercises

1. Describe a use for the Remainder Theorem.
2. Explain why the Rational Zero Theorem does not guarantee

finding zeros of a polynomial function.
3. What is the difference between rational and real zeros?
4. If Descartes’ Rule of Signs reveals a no change of signs or one

sign of changes, what specific conclusion can be drawn?
5. If synthetic division reveals a zero, why should we try that value

again as a possible solution?
For the following exercises, use the Remainder Theorem to find

the remainder.
6.

7.

8.

9.

10.

11.

12.

13.

For the following exercises, use the Factor Theorem to find all real
zeros for the given polynomial function and one factor.

14.
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15.

16.

17.

18.

19.

20.

21.

For the following exercises, use the Rational Zero Theorem to find
all real zeros.

22.

23.

24.

25.

26.

27.

28.

29.
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30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

For the following exercises, find all complex solutions (real and
non-real).

40.

41.

42.

43.

44.
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45.

For the following exercises, use Descartes’ Rule to determine the
possible number of positive and negative solutions. Confirm with
the given graph.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

For the following exercises, list all possible rational zeros for the
functions.

56.

57.

58.
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59.

60.

For the following exercises, use your calculator to graph the
polynomial function. Based on the graph, find the rational zeros. All
real solutions are rational.

61.

62.

63.

64.

65.

For the following exercises, construct a polynomial function of
least degree possible using the given information.

66. Real roots: –1, 1, 3 and

67. Real roots: –1 (with multiplicity 2 and 1) and

68. Real roots: –2,

(with multiplicity 2) and

69. Real roots:

, 0,

and
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70. Real roots: –4, –1, 1, 4 and

For the following exercises, find the dimensions of the box
described.

71. The length is twice as long as the width. The height is 2 inches
greater than the width. The volume is 192 cubic inches.

72. The length, width, and height are consecutive whole numbers.
The volume is 120 cubic inches.

73. The length is one inch more than the width, which is one inch
more than the height. The volume is 86.625 cubic inches.

74. The length is three times the height and the height is one inch
less than the width. The volume is 108 cubic inches.

75. The length is 3 inches more than the width. The width is 2
inches more than the height. The volume is 120 cubic inches.

For the following exercises, find the dimensions of the right
circular cylinder described.

76. The radius is 3 inches more than the height. The volume is

cubic meters.
77. The height is one less than one half the radius. The volume is

cubic meters.
78. The radius and height differ by one meter. The radius is larger

and the volume is

cubic meters.
79. The radius and height differ by two meters. The height is

greater and the volume is

cubic meters.
80. The radius is

meter greater than the height. The volume is
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cubic meters.
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PART XXI

RATIONAL FUNCTIONS
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151. Introduction to Rational
Functions

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Use arrow notation.
• Solve applied problems involving rational functions.
• Find the domains of rational functions.
• Identify vertical asymptotes.
• Identify horizontal asymptotes.
• Graph rational functions.

Suppose we know that the cost of making a product is dependent
on the number of items, x, produced. This is given by the equation

. If we want to know the average cost for producing x items, we
would divide the cost function by the number of items, x.

The average cost function, which yields the average cost per item
for x items produced, is

Many other application problems require finding an average value
in a similar way, giving us variables in the denominator. Written
without a variable in the denominator, this function will contain a
negative integer power.

In the last few sections, we have worked with polynomial
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functions, which are functions with non-negative integers for
exponents. In this section, we explore rational functions, which have
variables in the denominator.
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152. Use arrow notation

We have seen the graphs of the basic reciprocal function and the
squared reciprocal function from our study of toolkit functions.
Examine these graphs and notice some of their features.

Figure 1

Several things are apparent if we examine the graph of

.

1. On the left branch of the graph, the curve approaches the
x-axis

.
2. As the graph approaches

from the left, the curve drops, but as we approach zero from
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the right, the curve rises.
3. Finally, on the right branch of the graph, the curves

approaches the x-axis

.

To summarize, we use arrow notation to show that x or

is approaching a particular value.
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Arrow Notation

Symbol Meaning

x approaches
a from the
left (x < a but
close to a)

x approaches
a from the
right (x >
a but close
to a)

x approaches
infinity
(x increases
without
bound)

x approaches
negative
infinity
(x decreases
without
bound)

the output
approaches
infinity (the
output
increases
without
bound)

the output
approaches
negative
infinity (the
output
decreases
without
bound)

the output
approaches a
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Local Behavior of

Let’s begin by looking at the reciprocal function,

. We cannot divide by zero, which means the function is undefined
at

; so zero is not in the domain. As the input values approach zero
from the left side (becoming very small, negative values), the
function values decrease without bound (in other words, they
approach negative infinity). We can see this behavior in the table
below.

x –0.1 –0.01 –0

–10 –100 –1000

We write in arrow notation

As the input values approach zero from the right side (becoming
very small, positive values), the function values increase without
bound (approaching infinity). We can see this behavior in the table
below.

x 0.1 0.01 0.001

10 100 1000

We write in arrow notation

.
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Figure 2

This behavior creates a vertical asymptote, which is a vertical line
that the graph approaches but never crosses. In this case, the graph
is approaching the vertical line x = 0 as the input becomes close to
zero.
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Figure 3

A General Note: Vertical Asymptote

A vertical asymptote of a graph is a vertical line

where the graph tends toward positive or negative
infinity as the inputs approach a. We write

.
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End Behavior of

As the values of x approach infinity, the function values approach
0. As the values of x approach negative infinity, the function values
approach 0. Symbolically, using arrow notation

.

Figure 4

Based on this overall behavior and the graph, we can see that the
function approaches 0 but never actually reaches 0; it seems to level
off as the inputs become large. This behavior creates a horizontal
asymptote, a horizontal line that the graph approaches as the input
increases or decreases without bound. In this case, the graph is
approaching the horizontal line

.
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Figure 5

A General Note: Horizontal Asymptote

A horizontal asymptote of a graph is a horizontal line

where the graph approaches the line as the inputs
increase or decrease without bound. We write

.
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Example 1: Using Arrow Notation

Use arrow notation to describe the end behavior and
local behavior of the function graphed in Figure 6.

Figure 6
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Solution

Notice that the graph is showing a vertical asymptote
at

, which tells us that the function is undefined at

.

.
And as the inputs decrease without bound, the graph

appears to be leveling off at output values of 4,
indicating a horizontal asymptote at

. As the inputs increase without bound, the graph levels
off at 4.

.

Try It 1

Use arrow notation to describe the end behavior and
local behavior for the reciprocal squared function.

Solution
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Example 2: Using Transformations to
Graph a Rational Function

Sketch a graph of the reciprocal function shifted two
units to the left and up three units. Identify the
horizontal and vertical asymptotes of the graph, if any.

Solution

Shifting the graph left 2 and up 3 would result in the
function

or equivalently, by giving the terms a common
denominator,

The graph of the shifted function is displayed in
Figure 7.
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Figure 7

Notice that this function is undefined at

, and the graph also is showing a vertical asymptote at

.

.
As the inputs increase and decrease without bound,

the graph appears to be leveling off at output values of
3, indicating a horizontal asymptote at

.

.
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Analysis of the Solution

Notice that horizontal and vertical asymptotes are shifted left 2 and
up 3 along with the function.

Try It 2

Sketch the graph, and find the horizontal and vertical
asymptotes of the reciprocal squared function that has
been shifted right 3 units and down 4 units.

Solution
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153. Solve applied problems
involving rational functions

In Example 2, we shifted a toolkit function in a way that resulted
in the function

. This is an example of a rational function. A rational function is
a function that can be written as the quotient of two polynomial
functions. Many real-world problems require us to find the ratio
of two polynomial functions. Problems involving rates and
concentrations often involve rational functions.

A General Note: Rational Function

A rational function is a function that can be written as
the quotient of two polynomial functions

.
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Example 3: Solving an Applied Problem
Involving a Rational Function

A large mixing tank currently contains 100 gallons of
water into which 5 pounds of sugar have been mixed. A
tap will open pouring 10 gallons per minute of water
into the tank at the same time sugar is poured into the
tank at a rate of 1 pound per minute. Find the
concentration (pounds per gallon) of sugar in the tank
after 12 minutes. Is that a greater concentration than at
the beginning?

Solution

Let t be the number of minutes since the tap opened.
Since the water increases at 10 gallons per minute, and
the sugar increases at 1 pound per minute, these are
constant rates of change. This tells us the amount of
water in the tank is changing linearly, as is the amount
of sugar in the tank. We can write an equation
independently for each:

Solve applied problems involving rational functions | 1085



The concentration, C, will be the ratio of pounds of
sugar to gallons of water

The concentration after 12 minutes is given by
evaluating

at

.

This means the concentration is 17 pounds of sugar to
220 gallons of water.

At the beginning, the concentration is

Since

\frac{1}{20}=0.05\\" title="\frac{17}{220}\approx
0.08>\frac{1}{20}=0.05\\" class="latex mathjax">, the
concentration is greater after 12 minutes than at the
beginning.

Analysis of the Solution

To find the horizontal asymptote, divide the leading coefficient in
the numerator by the leading coefficient in the denominator:
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Notice the horizontal asymptote is

. This means the concentration, C, the ratio of pounds of sugar to
gallons of water, will approach 0.1 in the long term.

Try It 3

There are 1,200 freshmen and 1,500 sophomores at a prep
rally at noon. After 12 p.m., 20 freshmen arrive at the rally
every five minutes while 15 sophomores leave the rally. Find
the ratio of freshmen to sophomores at 1 p.m.

Solution
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154. Find the domains of
rational functions

A vertical asymptote represents a value at which a rational function
is undefined, so that value is not in the domain of the function.
A reciprocal function cannot have values in its domain that cause
the denominator to equal zero. In general, to find the domain of a
rational function, we need to determine which inputs would cause
division by zero.

A General Note: Domain of a Rational
Function

The domain of a rational function includes all real
numbers except those that cause the denominator to
equal zero.
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How To: Given a rational function, find
the domain.

1. Set the denominator equal to zero.
2. Solve to find the x-values that cause the

denominator to equal zero.
3. The domain is all real numbers except those

found in Step 2.

Example 4: Finding the Domain of a
Rational Function

Find the domain of

.
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Solution

Begin by setting the denominator equal to zero and
solving.

The denominator is equal to zero when

. The domain of the function is all real numbers except

.

Analysis of the Solution

A graph of this function confirms that the function is not defined
when

.
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Figure 8

There is a vertical asymptote at

and a hole in the graph at

. We will discuss these types of holes in greater detail later in this
section.

Try It 4

Find the domain of

.
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Solution
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155. Identify vertical and
horizontal asymptotes

By looking at the graph of a rational function, we can investigate its
local behavior and easily see whether there are asymptotes. We may
even be able to approximate their location. Even without the graph,
however, we can still determine whether a given rational function
has any asymptotes, and calculate their location.

Vertical Asymptotes

The vertical asymptotes of a rational function may be found by
examining the factors of the denominator that are not common to
the factors in the numerator. Vertical asymptotes occur at the zeros
of such factors.

How To: Given a rational function,
identify any vertical asymptotes of its
graph.

1. Factor the numerator and denominator.
2. Note any restrictions in the domain of the

function.
3. Reduce the expression by canceling common
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factors in the numerator and the denominator.
4. Note any values that cause the denominator to

be zero in this simplified version. These are where
the vertical asymptotes occur.

5. Note any restrictions in the domain where
asymptotes do not occur. These are removable
discontinuities.

Example 5: Identifying Vertical
Asymptotes

Find the vertical asymptotes of the graph of

.

Solution

First, factor the numerator and denominator.
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To find the vertical asymptotes, we determine where
this function will be undefined by setting the
denominator equal to zero:

Neither

nor

are zeros of the numerator, so the two values indicate
two vertical asymptotes. Figure 9 confirms the location
of the two vertical asymptotes.
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Figure 9

Removable Discontinuities

Occasionally, a graph will contain a hole: a single point where the
graph is not defined, indicated by an open circle. We call such a hole
a removable discontinuity.

For example, the function
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may be re-written by factoring the numerator and the denominator.

Notice that

is a common factor to the numerator and the denominator. The
zero of this factor,

, is the location of the removable discontinuity. Notice also that

is not a factor in both the numerator and denominator. The zero
of this factor,

, is the vertical asymptote.

Figure 10
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A General Note: Removable
Discontinuities of Rational Functions

A removable discontinuity occurs in the graph of a
rational function at

if a is a zero for a factor in the denominator that is
common with a factor in the numerator. We factor the
numerator and denominator and check for common
factors. If we find any, we set the common factor equal
to 0 and solve. This is the location of the removable
discontinuity. This is true if the multiplicity of this
factor is greater than or equal to that in the
denominator. If the multiplicity of this factor is greater
in the denominator, then there is still an asymptote at
that value.

Example 6: Identifying Vertical
Asymptotes and Removable
Discontinuities for a Graph

Find the vertical asymptotes and removable
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discontinuities of the graph of

.

Solution

Factor the numerator and the denominator.

Notice that there is a common factor in the
numerator and the denominator,

. The zero for this factor is

. This is the location of the removable discontinuity.

Notice that there is a factor in the denominator that is
not in the numerator,

. The zero for this factor is

. The vertical asymptote is

.

Identify vertical and horizontal asymptotes | 1099



Figure 11

The graph of this function will have the vertical
asymptote at

, but at

the graph will have a hole.

Try It 5

Find the vertical asymptotes and removable
discontinuities of the graph of
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.

Solution

Horizontal asymptotes

While vertical asymptotes describe the behavior of a graph as the
output gets very large or very small, horizontal asymptotes help
describe the behavior of a graph as the input gets very large or
very small. Recall that a polynomial’s end behavior will mirror that
of the leading term. Likewise, a rational function’s end behavior will
mirror that of the ratio of the leading terms of the numerator and
denominator functions.

There are three distinct outcomes when checking for horizontal
asymptotes:

Case 1: If the degree of the denominator > degree of the
numerator, there is a horizontal asymptote at y = 0.

In this case, the end behavior is

. This tells us that, as the inputs increase or decrease without bound,
this function will behave similarly to the function

, and the outputs will approach zero, resulting in a horizontal
asymptote at y = 0. Note that this graph crosses the horizontal
asymptote.
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Figure 12. Horizontal Asymptote y = 0 when

.
Case 2: If the degree of the denominator < degree of the

numerator by one, we get a slant asymptote.

In this case, the end behavior is

. This tells us that as the inputs increase or decrease without bound,
this function will behave similarly to the function

. As the inputs grow large, the outputs will grow and not level off,
so this graph has no horizontal asymptote. However, the graph of

looks like a diagonal line, and since f will behave similarly to g,
it will approach a line close to

. This line is a slant asymptote.
To find the equation of the slant asymptote, divide

. The quotient is

, and the remainder is 2. The slant asymptote is the graph of the line
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.

Figure 13. Slant Asymptote when

where degree of

\text{ degree of }q\text{ by }1\\" title="p>\text{ degree of }q\text{
by }1\\" class="latex mathjax">.

Case 3: If the degree of the denominator = degree of the
numerator, there is a horizontal asymptote at

, where and

are the leading coefficients of

and
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for

.

In this case, the end behavior is

. This tells us that as the inputs grow large, this function will behave
like the function

, which is a horizontal line. As

, resulting in a horizontal asymptote at y = 3. Note that this graph
crosses the horizontal asymptote.

Figure 14. Horizontal Asymptote when

.
Notice that, while the graph of a rational function will never cross

a vertical asymptote, the graph may or may not cross a horizontal
or slant asymptote. Also, although the graph of a rational function
may have many vertical asymptotes, the graph will have at most one
horizontal (or slant) asymptote.
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It should be noted that, if the degree of the numerator is larger
than the degree of the denominator by more than one, the end
behavior of the graph will mimic the behavior of the reduced end
behavior fraction. For instance, if we had the function

with end behavior

,

the end behavior of the graph would look similar to that of an even
polynomial with a positive leading coefficient.

A General Note: Horizontal Asymptotes
of Rational Functions

The horizontal asymptote of a rational function can
be determined by looking at the degrees of the
numerator and denominator.

• Degree of numerator is less than degree of
denominator: horizontal asymptote at y = 0.

• Degree of numerator is greater than degree of
denominator by one: no horizontal asymptote;
slant asymptote.

• Degree of numerator is equal to degree of
denominator: horizontal asymptote at ratio of
leading coefficients.
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Example 7: Identifying Horizontal and
Slant Asymptotes

For the functions below, identify the horizontal or
slant asymptote.

1.

2.
3.

Solution

For these solutions, we will use

.

1.

: The degree of

, so we can find the horizontal asymptote by
taking the ratio of the leading terms. There is a
horizontal asymptote at
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or

.
2.

: The degree of

and degree of

. Since

q\\" title="p>q\\" class="latex mathjax"> by 1,
there is a slant asymptote found at

.

The quotient is

and the remainder is 13. There is a slant asymptote at

.

: The degree of

Identify vertical and horizontal asymptotes | 1107



degree of

, so there is a horizontal asymptote y = 0.

Example 8: Identifying Horizontal
Asymptotes

In the sugar concentration problem earlier, we
created the equation

.

Find the horizontal asymptote and interpret it in
context of the problem.

Solution

Both the numerator and denominator are linear
(degree 1). Because the degrees are equal, there will be a
horizontal asymptote at the ratio of the leading
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coefficients. In the numerator, the leading term is t,
with coefficient 1. In the denominator, the leading term
is 10t, with coefficient 10. The horizontal asymptote will
be at the ratio of these values:

This function will have a horizontal asymptote at

.

This tells us that as the values of t increase, the values
of C will approach

. In context, this means that, as more time goes by, the
concentration of sugar in the tank will approach one-
tenth of a pound of sugar per gallon of water or

pounds per gallon.

Example 9: Identifying Horizontal and
Vertical Asymptotes

Find the horizontal and vertical asymptotes of the
function
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Solution

First, note that this function has no common factors,
so there are no potential removable discontinuities.

The function will have vertical asymptotes when the
denominator is zero, causing the function to be
undefined. The denominator will be zero at

, indicating vertical asymptotes at these values.

The numerator has degree 2, while the denominator
has degree 3. Since the degree of the denominator is
greater than the degree of the numerator, the
denominator will grow faster than the numerator,
causing the outputs to tend towards zero as the inputs
get large, and so as

. This function will have a horizontal asymptote at

.
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Figure 15

Try It 6

Find the vertical and horizontal asymptotes of the
function:

Solution
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A General Note: Intercepts of Rational
Functions

A rational function will have a y-intercept when the
input is zero, if the function is defined at zero. A rational
function will not have a y-intercept if the function is not
defined at zero.

Likewise, a rational function will have x-intercepts at
the inputs that cause the output to be zero. Since a
fraction is only equal to zero when the numerator is
zero, x-intercepts can only occur when the numerator
of the rational function is equal to zero.

Example 10: Finding the Intercepts of a
Rational Function

Find the intercepts of

.
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Solution

We can find the y-intercept by evaluating the function
at zero

The x-intercepts will occur when the function is equal
to zero:

The y-intercept is

, the x-intercepts are

and

.
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Figure 16

Try It 7

Given the reciprocal squared function that is shifted right
3 units and down 4 units, write this as a rational function.
Then, find the x– and y-intercepts and the horizontal and
vertical asymptotes.

Solution
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156. Identify horizontal
asymptotes

While vertical asymptotes describe the behavior of a graph as the
output gets very large or very small, horizontal asymptotes help
describe the behavior of a graph as the input gets very large or
very small. Recall that a polynomial’s end behavior will mirror that
of the leading term. Likewise, a rational function’s end behavior will
mirror that of the ratio of the leading terms of the numerator and
denominator functions.

There are three distinct outcomes when checking for horizontal
asymptotes:

Case 1: If the degree of the denominator > degree of the
numerator, there is a horizontal asymptote at y = 0.

In this case, the end behavior is
. This

tells us that, as the inputs increase or decrease without bound,
this function will behave similarly to the function

, and the outputs will approach

zero, resulting in a horizontal asymptote at y = 0. Note that this
graph crosses the horizontal asymptote.

Figure 12. Horizontal Asymptote y = 0 when

Identify horizontal asymptotes | 1115



.
Case 2: If the degree of the denominator < degree of the

numerator by one, we get a slant asymptote.

In this case, the end behavior is
. This tells us

that as the inputs increase or decrease without bound, this function
will behave similarly to the function .

As the inputs grow large, the outputs will grow and not level off,
so this graph has no horizontal asymptote. However, the graph
of looks like a diagonal line, and since

f will behave similarly to g, it will approach a line close to
. This line is a slant asymptote.

To find the equation of the slant asymptote, divide
. The quotient is , and

the remainder is 2. The slant asymptote is the graph of the line
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.

Figure 13. Slant Asymptote when

where degree of text{ degree
of }qtext{ by }1\" title="p>text{ degree of }qtext{ by }1\" class="latex

mathjax">.
Case 3: If the degree of the denominator = degree of the

numerator, there is a horizontal asymptote at
, where and are the leading coefficients of

and for

.

In this case, the end behavior is
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. This tells us

that as the inputs grow large, this function will behave like the
function , which is a horizontal line. As

, resulting in a

horizontal asymptote at y = 3. Note that this graph crosses the
horizontal asymptote.

Figure 14. Horizontal Asymptote when

.
Notice that, while the graph of a rational function will never cross

a vertical asymptote, the graph may or may not cross a horizontal
or slant asymptote. Also, although the graph of a rational function
may have many vertical asymptotes, the graph will have at most one
horizontal (or slant) asymptote.

It should be noted that, if the degree of the numerator is larger
than the degree of the denominator by more than one, the end
behavior of the graph will mimic the behavior of the reduced end
behavior fraction. For instance, if we had the function

with end behavior
,
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the end behavior of the graph would look similar to that of an even
polynomial with a positive leading coefficient.

A General Note: Horizontal Asymptotes
of Rational Functions

The horizontal asymptote of a rational function can
be determined by looking at the degrees of the
numerator and denominator.

• Degree of numerator is less than degree of
denominator: horizontal asymptote at y = 0.

• Degree of numerator is greater than degree of
denominator by one: no horizontal asymptote;
slant asymptote.

• Degree of numerator is equal to degree of
denominator: horizontal asymptote at ratio of
leading coefficients.
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Example 7: Identifying Horizontal and
Slant Asymptotes

For the functions below, identify the horizontal or
slant asymptote.

1.

2.

3.

Solution

For these solutions, we will use

.

1.

: The degree of ,
so we can find the horizontal asymptote by taking
the ratio of the leading terms. There is a
horizontal asymptote at or
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.

2.

: The degree of and degree of .

Since q\" title="p>q\" class="latex
mathjax"> by 1, there is a slant asymptote found at

.

The quotient is and the remainder is 13.
There is a slant asymptote at .

3.

: The degree of degree of

, so there is a horizontal asymptote y = 0.

Example 8: Identifying Horizontal
Asymptotes

In the sugar concentration problem earlier, we
created the equation

.

Find the horizontal asymptote and interpret it in
context of the problem.
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Solution

Both the numerator and denominator are linear
(degree 1). Because the degrees are equal, there will be a
horizontal asymptote at the ratio of the leading
coefficients. In the numerator, the leading term is t,
with coefficient 1. In the denominator, the leading term
is 10t, with coefficient 10. The horizontal asymptote will
be at the ratio of these values:

This function will have a horizontal asymptote at
.

This tells us that as the values of t increase, the values
of C will approach . In context, this means
that, as more time goes by, the concentration of sugar in
the tank will approach one-tenth of a pound of sugar
per gallon of water or pounds per gallon.
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Example 9: Identifying Horizontal and
Vertical Asymptotes

Find the horizontal and vertical asymptotes of the
function

Solution

First, note that this function has no common factors,
so there are no potential removable discontinuities.

The function will have vertical asymptotes when the
denominator is zero, causing the function to be
undefined. The denominator will be zero at

, indicating vertical
asymptotes at these values.

The numerator has degree 2, while the denominator
has degree 3. Since the degree of the denominator is
greater than the degree of the numerator, the
denominator will grow faster than the numerator,
causing the outputs to tend towards zero as the inputs
get large, and so as
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. This

function will have a horizontal asymptote at .

Figure 15

Try It 6

Find the vertical and horizontal asymptotes of the
function:

Solution
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A General Note: Intercepts of Rational
Functions

A rational function will have a y-intercept when the
input is zero, if the function is defined at zero. A rational
function will not have a y-intercept if the function is not
defined at zero.

Likewise, a rational function will have x-intercepts at
the inputs that cause the output to be zero. Since a
fraction is only equal to zero when the numerator is
zero, x-intercepts can only occur when the numerator
of the rational function is equal to zero.

Example 10: Finding the Intercepts of a
Rational Function

Find the intercepts of

.
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Solution

We can find the y-intercept by evaluating the function
at zero

The x-intercepts will occur when the function is equal
to zero:

The y-intercept is , the

x-intercepts are and

.

Figure 16
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Try It 7

Given the reciprocal squared function that is shifted right
3 units and down 4 units, write this as a rational function.
Then, find the x– and y-intercepts and the horizontal and
vertical asymptotes.

Solution
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157. Graph rational functions

In Example 9, we see that the numerator of a rational function
reveals the x-intercepts of the graph, whereas the denominator
reveals the vertical asymptotes of the graph. As with polynomials,
factors of the numerator may have integer powers greater than one.
Fortunately, the effect on the shape of the graph at those intercepts
is the same as we saw with polynomials.

The vertical asymptotes associated with the factors of the
denominator will mirror one of the two toolkit reciprocal functions.
When the degree of the factor in the denominator is odd, the
distinguishing characteristic is that on one side of the vertical
asymptote the graph heads towards positive infinity, and on the
other side the graph heads towards negative infinity.

Figure 17
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When the degree of the factor in the denominator is even, the
distinguishing characteristic is that the graph either heads toward
positive infinity on both sides of the vertical asymptote or heads
toward negative infinity on both sides.

Figure 18

For example, the graph of

is shown in Figure 19.
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Figure 19

• At the x-intercept

corresponding to the

factor of the numerator, the graph bounces, consistent with
the quadratic nature of the factor.

• At the x-intercept

corresponding to the

factor of the numerator, the graph passes through the axis as
we would expect from a linear factor.

• At the vertical asymptote
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corresponding to the

factor of the denominator, the graph heads towards positive
infinity on both sides of the asymptote, consistent with the
behavior of the function

.
• At the vertical asymptote

, corresponding to the

factor of the denominator, the graph heads towards positive
infinity on the left side of the asymptote and towards negative
infinity on the right side, consistent with the behavior of the
function

.

How To: Given a rational function,
sketch a graph.

1. Evaluate the function at 0 to find the
y-intercept.

2. Factor the numerator and denominator.
3. For factors in the numerator not common to the

denominator, determine where each factor of the
numerator is zero to find the x-intercepts.
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4. Find the multiplicities of the x-intercepts to
determine the behavior of the graph at those
points.

5. For factors in the denominator, note the
multiplicities of the zeros to determine the local
behavior. For those factors not common to the
numerator, find the vertical asymptotes by setting
those factors equal to zero and then solve.

6. For factors in the denominator common to
factors in the numerator, find the removable
discontinuities by setting those factors equal to 0
and then solve.

7. Compare the degrees of the numerator and the
denominator to determine the horizontal or slant
asymptotes.

8. Sketch the graph.

Example 11: Graphing a Rational
Function

Sketch a graph of

.
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Solution

We can start by noting that the function is already
factored, saving us a step.

Next, we will find the intercepts. Evaluating the
function at zero gives the y-intercept:

To find the x-intercepts, we determine when the
numerator of the function is zero. Setting each factor
equal to zero, we find x-intercepts at

and

. At each, the behavior will be linear (multiplicity 1), with
the graph passing through the intercept.

We have a y-intercept at

and x-intercepts at

and

.

To find the vertical asymptotes, we determine when
the denominator is equal to zero. This occurs when

and when
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, giving us vertical asymptotes at

and

.

There are no common factors in the numerator and
denominator. This means there are no removable
discontinuities.

Finally, the degree of denominator is larger than the
degree of the numerator, telling us this graph has a
horizontal asymptote at

.

To sketch the graph, we might start by plotting the
three intercepts. Since the graph has no x-intercepts
between the vertical asymptotes, and the y-intercept is
positive, we know the function must remain positive
between the asymptotes, letting us fill in the middle
portion of the graph as shown in Figure 20.
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Figure 20

The factor associated with the vertical asymptote at

was squared, so we know the behavior will be the same
on both sides of the asymptote. The graph heads toward
positive infinity as the inputs approach the asymptote
on the right, so the graph will head toward positive
infinity on the left as well.

For the vertical asymptote at

, the factor was not squared, so the graph will have
opposite behavior on either side of the asymptote. After
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passing through the x-intercepts, the graph will then
level off toward an output of zero, as indicated by the
horizontal asymptote.

Figure 21

Try It 8

Given the function
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, use the characteristics of polynomials and rational
functions to describe its behavior and sketch the function.

Solution

Writing Rational Functions

Now that we have analyzed the equations for rational functions and
how they relate to a graph of the function, we can use information
given by a graph to write the function. A rational function written
in factored form will have an x-intercept where each factor of the
numerator is equal to zero. (An exception occurs in the case of a
removable discontinuity.) As a result, we can form a numerator of
a function whose graph will pass through a set of x-intercepts by
introducing a corresponding set of factors. Likewise, because the
function will have a vertical asymptote where each factor of the
denominator is equal to zero, we can form a denominator that will
produce the vertical asymptotes by introducing a corresponding set
of factors.

A General Note: Writing Rational
Functions from Intercepts and
Asymptotes

If a rational function has x-intercepts at
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, vertical asymptotes at

, and no

, then the function can be written in the form:

where the powers

or

on each factor can be determined by the behavior of the
graph at the corresponding intercept or asymptote, and
the stretch factor a can be determined given a value of
the function other than the x-intercept or by the
horizontal asymptote if it is nonzero.

How To: Given a graph of a rational
function, write the function.

1. Determine the factors of the numerator.
Examine the behavior of the graph at the
x-intercepts to determine the zeroes and their
multiplicities. (This is easy to do when finding the
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“simplest” function with small multiplicities—such
as 1 or 3—but may be difficult for larger
multiplicities—such as 5 or 7, for example.)

2. Determine the factors of the denominator.
Examine the behavior on both sides of each
vertical asymptote to determine the factors and
their powers.

3. Use any clear point on the graph to find the
stretch factor.

Example 12: Writing a Rational
Function from Intercepts and Asymptotes

Write an equation for the rational function shown in
Figure 22.
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Figure 22

Solution

The graph appears to have x-intercepts at
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and

. At both, the graph passes through the intercept,
suggesting linear factors. The graph has two vertical
asymptotes. The one at

seems to exhibit the basic behavior similar to

, with the graph heading toward positive infinity on one
side and heading toward negative infinity on the other.
The asymptote at

is exhibiting a behavior similar to

, with the graph heading toward negative infinity on
both sides of the asymptote.

Figure 23
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We can use this information to write a function of the
form

.
To find the stretch factor, we can use another clear

point on the graph, such as the y-intercept

.

This gives us a final function of

.
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158. Key Concepts & Glossary

Key Equations

Rational
Function

Key Concepts

• We can use arrow notation to describe local behavior and end
behavior of the toolkit functions

and

.
• A function that levels off at a horizontal value has a horizontal

asymptote. A function can have more than one vertical
asymptote.

• Application problems involving rates and concentrations often
involve rational functions.

• The domain of a rational function includes all real numbers
except those that cause the denominator to equal zero.

• The vertical asymptotes of a rational function will occur where
the denominator of the function is equal to zero and the
numerator is not zero.

• A removable discontinuity might occur in the graph of a
rational function if an input causes both numerator and
denominator to be zero.
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• A rational function’s end behavior will mirror that of the ratio
of the leading terms of the numerator and denominator
functions.

• Graph rational functions by finding the intercepts, behavior at
the intercepts and asymptotes, and end behavior.

• If a rational function has x-intercepts at

, vertical asymptotes at , and no

, then the function can be written in the form

Glossary

arrow notation
a way to symbolically represent the local and end behavior of a
function by using arrows to indicate that an input or output
approaches a value

horizontal asymptote
a horizontal line y = b where the graph approaches the line as
the inputs increase or decrease without bound.

rational function
a function that can be written as the ratio of two polynomials

removable discontinuity
a single point at which a function is undefined that, if filled in,
would make the function continuous; it appears as a hole on
the graph of a function

vertical asymptote
a vertical line x = a where the graph tends toward positive or
negative infinity as the inputs approach a
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159. Section Exercises

1. What is the fundamental difference in the algebraic
representation of a polynomial function and a rational function?

2. What is the fundamental difference in the graphs of polynomial
functions and rational functions?

3. If the graph of a rational function has a removable discontinuity,
what must be true of the functional rule?

4. Can a graph of a rational function have no vertical asymptote?
If so, how?

5. Can a graph of a rational function have no x-intercepts? If so,
how?

For the following exercises, find the domain of the rational
functions.

6.

7.

8.

9.

For the following exercises, find the domain, vertical asymptotes,
and horizontal asymptotes of the functions.

10.

11.

12.
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13.

14.

15.

16.

17.

18.

19.

For the following exercises, find the x– and y-intercepts for the
functions.

20.

21.

22.

23.

24.

For the following exercises, describe the local and end behavior of
the functions.

25.
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26.

27.

28.

29.

For the following exercises, find the slant asymptote of the
functions.

30.

31.

32.

33.

34.

For the following exercises, use the given transformation to graph
the function. Note the vertical and horizontal asymptotes.

35. The reciprocal function shifted up two units.
36. The reciprocal function shifted down one unit and left three

units.
37. The reciprocal squared function shifted to the right 2 units.
38. The reciprocal squared function shifted down 2 units and right

1 unit.
For the following exercises, find the horizontal intercepts, the

vertical intercept, the vertical asymptotes, and the horizontal or
slant asymptote of the functions. Use that information to sketch a
graph.
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39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

For the following exercises, write an equation for a rational
function with the given characteristics.

51. Vertical asymptotes at x = 5 and x = –5, x-intercepts at

and
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, y-intercept at

52. Vertical asymptotes at

and

, x-intercepts at

and

, y-intercept at

53. Vertical asymptotes at

and

, x-intercepts at

and

, Horizontal asymptote at

54. Vertical asymptotes at

and

, x-intercepts at

and

, Horizontal asymptote at

55. Vertical asymptote at
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, Double zero at

, y-intercept at

56. Vertical asymptote at

, Double zero at

, y-intercept at

For the following exercises, use the graphs to write an equation
for the function.

57.
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58.

59.
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60.

61.

62.
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63.

Section Exercises | 1153



64.

For the following exercises, make tables to show the behavior
of the function near the vertical asymptote and reflecting the
horizontal asymptote

65.

66.

67.

68.

69.

For the following exercises, use a calculator to graph

. Use the graph to solve
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.
70.

71.

72.

73.

74.

For the following exercises, identify the removable discontinuity.
75.

76.

77.

78.

79.

For the following exercises, express a rational function that
describes the situation.

80. A large mixing tank currently contains 200 gallons of water,
into which 10 pounds of sugar have been mixed. A tap will open,
pouring 10 gallons of water per minute into the tank at the same
time sugar is poured into the tank at a rate of 3 pounds per minute.
Find the concentration (pounds per gallon) of sugar in the tank after
t minutes.
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81. A large mixing tank currently contains 300 gallons of water,
into which 8 pounds of sugar have been mixed. A tap will open,
pouring 20 gallons of water per minute into the tank at the same
time sugar is poured into the tank at a rate of 2 pounds per minute.
Find the concentration (pounds per gallon) of sugar in the tank after
t minutes.

For the following exercises, use the given rational function to
answer the question.

82. The concentration C of a drug in a patient’s bloodstream
t hours after injection in given by

. What happens to the concentration of the drug as t increases?
83. The concentration C of a drug in a patient’s bloodstream

t hours after injection is given by

. Use a calculator to approximate the time when the concentration
is highest.

For the following exercises, construct a rational function that
will help solve the problem. Then, use a calculator to answer the
question.

84. An open box with a square base is to have a volume of 108
cubic inches. Find the dimensions of the box that will have minimum
surface area. Let x = length of the side of the base.

85. A rectangular box with a square base is to have a volume of
20 cubic feet. The material for the base costs 30 cents/ square foot.
The material for the sides costs 10 cents/square foot. The material
for the top costs 20 cents/square foot. Determine the dimensions
that will yield minimum cost. Let x = length of the side of the base.

86. A right circular cylinder has volume of 100 cubic inches. Find
the radius and height that will yield minimum surface area. Let x =
radius.

87. A right circular cylinder with no top has a volume of 50 cubic
meters. Find the radius that will yield minimum surface area. Let x =
radius.
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88. A right circular cylinder is to have a volume of 40 cubic inches.
It costs 4 cents/square inch to construct the top and bottom and
1 cent/square inch to construct the rest of the cylinder. Find the
radius to yield minimum cost. Let x = radius.
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160. Introduction to Inverses
and Radical Functions

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Find the inverse of a polynomial function.
• Restrict the domain to find the inverse of a

polynomial function.
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Figure 1

A mound of gravel is in the shape of a cone with the height equal to
twice the radius.

The volume is found using a formula from elementary geometry.

We have written the volume V in terms of the radius r. However, in
some cases, we may start out with the volume and want to find the
radius. For example: A customer purchases 100 cubic feet of gravel
to construct a cone shape mound with a height twice the radius.
What are the radius and height of the new cone? To answer this
question, we use the formula
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This function is the inverse of the formula for V in terms of r.
In this section, we will explore the inverses of polynomial and

rational functions and in particular the radical functions we
encounter in the process.
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161. Find the inverse of a
polynomial function

Two functions f and g are inverse functions if for every coordinate
pair in f, (a, b), there exists a corresponding coordinate pair in the
inverse function, g, (b, a). In other words, the coordinate pairs of the
inverse functions have the input and output interchanged.

For a function to have an inverse function the function to create
a new function that is one-to-one and would have an inverse
function.

For example, suppose a water runoff collector is built in the shape
of a parabolic trough as shown below. We can use the information
in the figure to find the surface area of the water in the trough as a
function of the depth of the water.

Figure 2

Because it will be helpful to have an equation for the parabolic
cross-sectional shape, we will impose a coordinate system at the
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cross section, with x measured horizontally and y measured
vertically, with the origin at the vertex of the parabola.

Figure 3

From this we find an equation for the parabolic shape. We placed
the origin at the vertex of the parabola, so we know the equation
will have form

. Our equation will need to pass through the point (6, 18), from which
we can solve for the stretch factor a.

Our parabolic cross section has the equation
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We are interested in the surface area of the water, so we must
determine the width at the top of the water as a function of the
water depth. For any depth y the width will be given by 2x, so we
need to solve the equation above for x and find the inverse function.
However, notice that the original function is not one-to-one, and
indeed, given any output there are two inputs that produce the
same output, one positive and one negative.

To find an inverse, we can restrict our original function to a
limited domain on which it is one-to-one. In this case, it makes
sense to restrict ourselves to positive x values. On this domain, we
can find an inverse by solving for the input variable:

This is not a function as written. We are limiting ourselves to
positive x values, so we eliminate the negative solution, giving us the
inverse function we’re looking for.

0\\" title="y=\frac{{x}^{2}}{2},\text{ }x>0\\" class="latex mathjax">

Because x is the distance from the center of the parabola to either
side, the entire width of the water at the top will be 2x. The trough
is 3 feet (36 inches) long, so the surface area will then be:

This example illustrates two important points:

1. When finding the inverse of a quadratic, we have to limit
ourselves to a domain on which the function is one-to-one.

2. The inverse of a quadratic function is a square root function.
Both are toolkit functions and different types of power
functions.
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Functions involving roots are often called radical functions. While
it is not possible to find an inverse of most polynomial functions,
some basic polynomials do have inverses. Such functions are called
invertible functions, and we use the notation

.
Warning:

is not the same as the reciprocal of the function

. This use of –1 is reserved to denote inverse functions. To denote
the reciprocal of a function

, we would need to write

.
An important relationship between inverse functions is that they

“undo” each other. If

is the inverse of a function f, then f is the inverse of the function

. In other words, whatever the function f does to x,

undoes it—and vice-versa. More formally, we write

and
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A General Note: Verifying Two
Functions Are Inverses of One Another

Two functions, f and g, are inverses of one another if
for all x in the domain of f and g.

How To: Given a polynomial function,
find the inverse of the function by
restricting the domain in such a way that
the new function is one-to-one.

1. Replace

with y.
2. Interchange x and y.
3. Solve for y, and rename the function

.

1168 | Find the inverse of a polynomial function



Example 1: Verifying Inverse Functions

Show that

and

are inverses, for

.

Solution

We must show that

and

.
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Therefore,

and

are inverses.

Try It 1

Show that

and

are inverses.

Solution

Example 2: Finding the Inverse of a
Cubic Function

Find the inverse of the function
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.

Solution

This is a transformation of the basic cubic toolkit
function, and based on our knowledge of that function,
we know it is one-to-one. Solving for the inverse by
solving for x.

Analysis of the Solution

Look at the graph of f and

. Notice that the two graphs are symmetrical about the line

. This is always the case when graphing a function and its inverse
function.

Also, since the method involved interchanging x and y, notice
corresponding points. If

Find the inverse of a polynomial function | 1171



is on the graph of f, then

is on the graph of

. Since

is on the graph of f, then

is on the graph of

. Similarly, since

is on the graph of f, then

is on the graph of

.
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Figure 4

Try It 2

Find the inverse function of
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.

Solution
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162. Restrict the domain to
find the inverse of a
polynomial function

So far, we have been able to find the inverse functions of cubic
functions without having to restrict their domains. However, as we
know, not all cubic polynomials are one-to-one. Some functions
that are not one-to-one may have their domain restricted so that
they are one-to-one, but only over that domain. The function over
the restricted domain would then have an inverse function. Since
quadratic functions are not one-to-one, we must restrict their
domain in order to find their inverses.

A General Note: Restricting the
Domain

If a function is not one-to-one, it cannot have an
inverse. If we restrict the domain of the function so that
it becomes one-to-one, thus creating a new function,
this new function will have an inverse.

Restrict the domain to find the
inverse of a polynomial



How To: Given a polynomial function,
restrict the domain of a function that is
not one-to-one and then find the inverse.

1. Restrict the domain by determining a domain on
which the original function is one-to-one.

2. Replace f(x) with y.
3. Interchange x and y.
4. Solve for y, and rename the function or pair of

function

.
5. Revise the formula for

by ensuring that the outputs of the inverse
function correspond to the restricted domain of
the original function.

Example 3: Restricting the Domain to
Find the Inverse of a Polynomial Function

Find the inverse function of f:
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1.
2.

Solution

The original function

is not one-to-one, but the function is restricted to a
domain of

or

on which it is one-to-one.

Restrict the domain to find the inverse of a polynomial function | 1177



=4 and the second is when x=4." width="731"
height="365" data-media-type="image/jpg">Figure 5
To find the inverse, start by replacing

with the simple variable y.

This is not a function as written. We need to examine
the restrictions on the domain of the original function
to determine the inverse. Since we reversed the roles of
x and y for the original f(x), we looked at the domain: the
values x could assume. When we reversed the roles of
x and y, this gave us the values y could assume. For this
function,

, so for the inverse, we should have

, which is what our inverse function gives.

1. The domain of the original function was
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restricted to

, so the outputs of the inverse need to be the
same,

, and we must use the + case:

2. The domain of the original function was
restricted to

, so the outputs of the inverse need to be the
same,

, and we must use the – case:

Analysis of the Solution

On the graphs below, we see the original function
graphed on the same set of axes as its inverse function.
Notice that together the graphs show symmetry about
the line

. The coordinate pair

is on the graph of f and the coordinate pair

is on the graph of
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. For any coordinate pair, if (a, b) is on the graph of f,
then (b, a) is on the graph of

. Finally, observe that the graph of f intersects the graph
of

on the line y = x. Points of intersection for the graphs of
f and

will always lie on the line y = x.

Figure 6

Example 4: Finding the Inverse of a
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Quadratic Function When the
Restriction Is Not Specified

Restrict the domain and then find the inverse of

.

Solution

We can see this is a parabola with vertex at

that opens upward. Because the graph will be
decreasing on one side of the vertex and increasing on
the other side, we can restrict this function to a domain
on which it will be one-to-one by limiting the domain to

.

To find the inverse, we will use the vertex form of the
quadratic. We start by replacing f(x) with a simple
variable, y, then solve for x.
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Now we need to determine which case to use.
Because we restricted our original function to a domain
of

, the outputs of the inverse should be the same, telling
us to utilize the + case

If the quadratic had not been given in vertex form,
rewriting it into vertex form would be the first step.
This way we may easily observe the coordinates of the
vertex to help us restrict the domain.

Analysis of the Solution

Notice that we arbitrarily decided to restrict the domain on

. We could just have easily opted to restrict the domain on

, in which case

. Observe the original function graphed on the same set of axes
as its inverse function in the graph below. Notice that both graphs
show symmetry about the line y = x. The coordinate pair

is on the graph of f and the coordinate pair
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is on the graph of

. Observe from the graph of both functions on the same set of axes
that

and

Finally, observe that the graph of f intersects the graph of

along the line y = x.

Figure 7
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Try It 3

Find the inverse of the function

, on the domain

.

Solution

Solving Applications of Radical Functions

Notice that the functions from previous examples were all
polynomials, and their inverses were radical functions. If we want to
find the inverse of a radical function, we will need to restrict the
domain of the answer because the range of the original function is
limited.

How To: Given a radical function, find
the inverse.

1. Determine the range of the original function.
2. Replace f(x) with y, then solve for x.

1184 | Restrict the domain to find the inverse of a polynomial function



3. If necessary, restrict the domain of the inverse
function to the range of the original function.

Example 5: Finding the Inverse of a
Radical Function

Restrict the domain and then find the inverse of the
function

.

Solution

Note that the original function has range

. Replace

with y, then solve for x.

Restrict the domain to find the inverse of a polynomial function | 1185



Recall that the domain of this function must be
limited to the range of the original function.

Analysis of the Solution

Notice in the graph below that the inverse is a reflection of the
original function over the line y = x. Because the original function
has only positive outputs, the inverse function has only positive
inputs.
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Figure 8

Try It 4

Restrict the domain and then find the inverse of the
function

.

Solution
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Solving Applications of Radical Functions

Radical functions are common in physical models, as we saw in the
section opener. We now have enough tools to be able to solve the
problem posed at the start of the section.

Example 6: Solving an Application with
a Cubic Function

A mound of gravel is in the shape of a cone with the
height equal to twice the radius. The volume of the cone
in terms of the radius is given by

Find the inverse of the function

that determines the volume V of a cone and is a function
of the radius r. Then use the inverse function to
calculate the radius of such a mound of gravel
measuring 100 cubic feet. Use

.
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Solution

Start with the given function for V. Notice that the
meaningful domain for the function is

since negative radii would not make sense in this
context. Also note the range of the function (hence, the
domain of the inverse function) is

. Solve for r in terms of V, using the method outlined
previously.

This is the result stated in the section opener. Now
evaluate this for V = 100 and

.

Therefore, the radius is about 3.63 ft.
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Determining the Domain of a Radical Function
Composed with Other Functions

When radical functions are composed with other functions,
determining domain can become more complicated.

Example 7: Finding the Domain of a
Radical Function Composed with a
Rational Function

Find the domain of the function

.

Solution

Because a square root is only defined when the
quantity under the radical is non-negative, we need to
determine where

. The output of a rational function can change signs
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(change from positive to negative or vice versa) at
x-intercepts and at vertical asymptotes. For this
equation, the graph could change signs at x = –2, 1, and
3.

To determine the intervals on which the rational
expression is positive, we could test some values in the
expression or sketch a graph. While both approaches
work equally well, for this example we will use a graph.

Figure 9

This function has two x-intercepts, both of which
exhibit linear behavior near the x-intercepts. There is
one vertical asymptote, corresponding to a linear factor;
this behavior is similar to the basic reciprocal toolkit
function, and there is no horizontal asymptote because
the degree of the numerator is larger than the degree of
the denominator. There is a y-intercept at (0, 6).

From the y-intercept and x-intercept at x = –2, we can

Restrict the domain to find the inverse of a polynomial function | 1191



sketch the left side of the graph. From the behavior at
the asymptote, we can sketch the right side of the
graph.

From the graph, we can now tell on which intervals
the outputs will be non-negative, so that we can be sure
that the original function f(x) will be defined. f(x) has
domain

, or in interval notation,

.

Finding Inverses of Rational Functions

As with finding inverses of quadratic functions, it is sometimes
desirable to find the inverse of a rational function, particularly of
rational functions that are the ratio of linear functions, such as in
concentration applications.

Example 8: Finding the Inverse of a
Rational Function

The function
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represents the concentration C of an acid solution after
n mL of 40% solution has been added to 100 mL of a
20% solution. First, find the inverse of the function; that
is, find an expression for n in terms of C. Then use your
result to determine how much of the 40% solution
should be added so that the final mixture is a 35%
solution.

Solution

We first want the inverse of the function. We will
solve for n in terms of C.

Now evaluate this function for C=0.35 (35%).

We can conclude that 300 mL of the 40% solution
should be added.
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Try It 5

Find the inverse of the function

.

Solution
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163. Key Concepts & Glossary

Key Concepts

• The inverse of a quadratic function is a square root function.
• If

is the inverse of a function f, then f is the inverse of the
function

.
• While it is not possible to find an inverse of most polynomial

functions, some basic polynomials are invertible.
• To find the inverse of certain functions, we must restrict the

function to a domain on which it will be one-to-one.
• When finding the inverse of a radical function, we need a

restriction on the domain of the answer.
• Inverse and radical and functions can be used to solve

application problems.

Glossary

invertible function
any function that has an inverse function
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164. Section Exercises

1. Explain why we cannot find inverse functions for all polynomial
functions.

2. Why must we restrict the domain of a quadratic function when
finding its inverse?

3. When finding the inverse of a radical function, what restriction
will we need to make?

4. The inverse of a quadratic function will always take what form?
For the following exercises, find the inverse of the function on the

given domain.
5.

6.

7.

8.

9.

10.

11.

12.

For the following exercises, find the inverse of the functions.
13.

14.
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15.

16.

For the following exercises, find the inverse of the functions.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
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30.

31.

For the following exercises, find the inverse of the function and
graph both the function and its inverse.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

For the following exercises, use a graph to help determine the
domain of the functions.

42.

43.
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44.

45.

46.

For the following exercises, use a calculator to graph the function.
Then, using the graph, give three points on the graph of the inverse
with y-coordinates given.

47.

48.

49.

50.

51.

For the following exercises, find the inverse of the functions with
a, b, c positive real numbers.

52.

53.

54.

55.

56.
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For the following exercises, determine the function described and
then use it to answer the question.

57. An object dropped from a height of 200 meters has a height,

, in meters after t seconds have lapsed, such that

. Express t as a function of height, h, and find the time to reach a
height of 50 meters.

58. An object dropped from a height of 600 feet has a height,

, in feet after t seconds have elapsed, such that

. Express t as a function of height h, and find the time to reach a
height of 400 feet.

59. The volume, V, of a sphere in terms of its radius, r, is given by

. Express r as a function of V, and find the radius of a sphere with
volume of 200 cubic feet.

60. The surface area, A, of a sphere in terms of its radius, r,
is given by

. Express r as a function of V, and find the radius of a sphere with a
surface area of 1000 square inches.

61. A container holds 100 ml of a solution that is 25 ml acid.
If n ml of a solution that is 60% acid is added, the function

gives the concentration, C, as a function of the number of ml added,
n. Express n as a function of C and determine the number of mL that
need to be added to have a solution that is 50% acid.

62. The period T, in seconds, of a simple pendulum as a function
of its length l, in feet, is given by
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. Express l as a function of T and determine the length of a
pendulum with period of 2 seconds.

63. The volume of a cylinder, V, in terms of radius, r, and height,
h, is given by

. If a cylinder has a height of 6 meters, express the radius as a
function of V and find the radius of a cylinder with volume of 300
cubic meters.

64. The surface area, A, of a cylinder in terms of its radius, r,
and height, h, is given by

. If the height of the cylinder is 4 feet, express the radius as a
function of V and find the radius if the surface area is 200 square
feet.

65. The volume of a right circular cone, V, in terms of its radius,
r, and its height, h, is given by

. Express r in terms of h if the height of the cone is 12 feet and find
the radius of a cone with volume of 50 cubic inches.

66. Consider a cone with height of 30 feet. Express the radius, r,
in terms of the volume, V, and find the radius of a cone with volume
of 1000 cubic feet.
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165. Introduction to
Exponential Functions

Figure 1. Electron micrograph of E.Coli bacteria (credit: “Mattosaurus,”
Wikimedia Commons)

Focus in on a square centimeter of your skin. Look closer. Closer
still. If you could look closely enough, you would see hundreds of
thousands of microscopic organisms. They are bacteria, and they
are not only on your skin, but in your mouth, nose, and even your
intestines. In fact, the bacterial cells in your body at any given
moment outnumber your own cells. But that is no reason to feel
bad about yourself. While some bacteria can cause illness, many are
healthy and even essential to the body.

Bacteria commonly reproduce through a process called binary
fission, during which one bacterial cell splits into two. When
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conditions are right, bacteria can reproduce very quickly. Unlike
humans and other complex organisms, the time required to form a
new generation of bacteria is often a matter of minutes or hours, as
opposed to days or years.1

For simplicity’s sake, suppose we begin with a culture of one
bacterial cell that can divide every hour. The table below shows the
number of bacterial cells at the end of each subsequent hour. We
see that the single bacterial cell leads to over one thousand bacterial
cells in just ten hours! And if we were to extrapolate the table to
twenty-four hours, we would have over 16 million!

Hour 0 1 2 3 4 5 6 7 8 9 10

Bacteria 1 2 4 8 16 32 64 128 256 512 1024

Exponential Functions

In this chapter, we will explore exponential functions, which can
be used for, among other things, modeling growth patterns such
as those found in bacteria. We will also investigate logarithmic
functions, which are closely related to exponential functions. Both
types of functions have numerous real-world applications when it
comes to modeling and interpreting data.

1. Todar, PhD, Kenneth. Todar's Online Textbook of
Bacteriology. http://textbookofbacteriology.net/
growth_3.html.
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LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Evaluate exponential functions.
• Find the equation of an exponential function.
• Use compound interest formulas.
• Evaluate exponential functions with base e.

India is the second most populous country in the world with a
population of about 1.25 billion people in 2013. The population is
growing at a rate of about 1.2% each year.2 If this rate continues,
the population of India will exceed China’s population by the year
2031. When populations grow rapidly, we often say that the growth
is “exponential,” meaning that something is growing very rapidly. To
a mathematician, however, the term exponential growth has a very
specific meaning. In this section, we will take a look at exponential
functions, which model this kind of rapid growth.

2. http://www.worldometers.info/world-population/.
Accessed February 24, 2014.
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166. Evaluate exponential
functions

Recall that the base of an exponential function must be a positive
real number other than 1. Why do we limit the base b to positive
values? To ensure that the outputs will be real numbers. Observe
what happens if the base is not positive:

• Let b = –9 and

. Then

, which is not a real number.

Why do we limit the base to positive values other than 1? Because
base 1 results in the constant function. Observe what happens if the
base is 1:

• Let b = 1. Then

for any value of x.

To evaluate an exponential function with the form

, we simply substitute x with the given value, and calculate the
resulting power. For example:

Let

. What is

?
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To evaluate an exponential function with a form other than the basic
form, it is important to follow the order of operations. For example:

Let

. What is

?

Note that if the order of operations were not followed, the result
would be incorrect:

Example 1: Evaluating Exponential
Functions

Let

. Evaluate

without using a calculator.
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Solution

Follow the order of operations. Be sure to pay
attention to the parentheses.

Try It 1

Let

. Evaluate

using a calculator. Round to four decimal places.

Solution

Because the output of exponential functions increases very rapidly,
the term “exponential growth” is often used in everyday language
to describe anything that grows or increases rapidly. However,
exponential growth can be defined more precisely in a
mathematical sense. If the growth rate is proportional to the
amount present, the function models exponential growth.

1210 | Evaluate exponential functions



A General Note: Exponential Growth

A function that models exponential growth grows by
a rate proportional to the amount present. For any real
number x and any positive real numbers a and b such
that

, an exponential growth function has the form

where

• a is the initial or starting value of the function.
• b is the growth factor or growth multiplier per

unit x.

In more general terms, we have an exponential function, in which
a constant base is raised to a variable exponent. To differentiate
between linear and exponential functions, let’s consider two
companies, A and B. Company A has 100 stores and expands by
opening 50 new stores a year, so its growth can be represented
by the function

. Company B has 100 stores and expands by increasing the number
of stores by 50% each year, so its growth can be represented by
the function

.
A few years of growth for these companies are illustrated below.
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Year, x Stores, Company A Stores, Company B

0 100 + 50(0) = 100 100(1 + 0.5)0 = 100

1 100 + 50(1) = 150 100(1 + 0.5)1 = 150

2 100 + 50(2) = 200 100(1 + 0.5)2 = 225

3 100 + 50(3) = 250 100(1 + 0.5)3 = 337.5

x A(x) = 100 + 50x B(x) = 100(1 + 0.5)x

The graphs comparing the number of stores for each company
over a five-year period are shown in below. We can see that, with
exponential growth, the number of stores increases much more
rapidly than with linear growth.
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Figure 2. The graph shows the numbers of stores Companies A and B opened
over a five-year period.

Notice that the domain for both functions is

, and the range for both functions is

. After year 1, Company B always has more stores than Company A.
Now we will turn our attention to the function representing the

number of stores for Company B,

. In this exponential function, 100 represents the initial number
of stores, 0.50 represents the growth rate, and

represents the growth factor. Generalizing further, we can write
this function as

, where 100 is the initial value, 1.5 is called the base, and x is called
the exponent.

Example 2: Evaluating a Real-World
Exponential Model

At the beginning of this section, we learned that the
population of India was about 1.25 billion in the year
2013, with an annual growth rate of about 1.2%. This
situation is represented by the growth function
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, where t is the number of years since 2013. To the
nearest thousandth, what will the population of India be
in 2031?

Solution

To estimate the population in 2031, we evaluate the
models for t = 18, because 2031 is 18 years after 2013.
Rounding to the nearest thousandth,

There will be about 1.549 billion people in India in the
year 2031.

Try It 2

The population of China was about 1.39 billion in the year
2013, with an annual growth rate of about 0.6%. This
situation is represented by the growth function

, where t is the number of years since 2013. To the nearest
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thousandth, what will the population of China be for the
year 2031? How does this compare to the population
prediction we made for India in Example 2?

Solution
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167. Find the equation of an
exponential function

In the previous examples, we were given an exponential function,
which we then evaluated for a given input. Sometimes we are given
information about an exponential function without knowing the
function explicitly. We must use the information to first write the
form of the function, then determine the constants a and b, and
evaluate the function.

How To: Given two data points, write
an exponential model.

1. If one of the data points has the form

, then a is the initial value. Using a, substitute the
second point into the equation

, and solve for b.
2. If neither of the data points have the form

, substitute both points into two equations with
the form

. Solve the resulting system of two equations in
two unknowns to find a and b.
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3. Using the a and b found in the steps above,
write the exponential function in the form

.

Example 3: Writing an Exponential
Model When the Initial Value Is Known

In 2006, 80 deer were introduced into a wildlife
refuge. By 2012, the population had grown to 180 deer.
The population was growing exponentially. Write an
algebraic function N(t) representing the population N of
deer over time t.

Solution

We let our independent variable t be the number of
years after 2006. Thus, the information given in the
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problem can be written as input-output pairs: (0, 80)
and (6, 180). Notice that by choosing our input variable
to be measured as years after 2006, we have given
ourselves the initial value for the function, a = 80. We
can now substitute the second point into the equation

to find b:

NOTE: Unless otherwise stated, do not round any
intermediate calculations. Then round the final answer to
four places for the remainder of this section.

The exponential model for the population of deer is

. (Note that this exponential function models short-term
growth. As the inputs gets large, the output will get
increasingly larger, so much so that the model may not
be useful in the long term.)

We can graph our model to observe the population
growth of deer in the refuge over time. Notice that the
graph below passes through the initial points given in
the problem,

and

. We can also see that the domain for the function is

, and the range for the function is

Find the equation of an exponential function | 1219



.

Figure 3. Graph showing the population of deer over
time,

, t years after 2006
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Try It 3

A wolf population is growing exponentially. In 2011, 129
wolves were counted. By 2013 the population had reached
236 wolves. What two points can be used to derive an
exponential equation modeling this situation? Write the
equation representing the population N of wolves over time
t.

Solution

Example 4: Writing an Exponential
Model When the Initial Value is Not
Known

Find an exponential function that passes through the
points

and

.
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Solution

Because we don’t have the initial value, we substitute
both points into an equation of the form

, and then solve the system for a and b.

• Substituting

gives

• Substituting

gives

Use the first equation to solve for a in terms of b:

Substitute a in the second equation, and solve for b:

Use the value of b in the first equation to solve for the
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value of a:

Thus, the equation is

.

We can graph our model to check our work. Notice
that the graph below passes through the initial points
given in the problem,

and

. The graph is an example of an exponential decay
function.

Figure 4. The graph of
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models exponential decay.

Try It 4

Given the two points

and

, find the equation of the exponential function that passes
through these two points.

Solution

Q & A

Do two points always determine a unique
exponential function?

Yes, provided the two points are either both above the
x-axis or both below the x-axis and have different x-
coordinates. But keep in mind that we also need to know
that the graph is, in fact, an exponential function. Not
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every graph that looks exponential really is exponential.
We need to know the graph is based on a model that
shows the same percent growth with each unit increase in
x, which in many real world cases involves time.

How To: Given the graph of an
exponential function, write its equation.

1. First, identify two points on the graph. Choose
the y-intercept as one of the two points whenever
possible. Try to choose points that are as far apart
as possible to reduce round-off error.

2. If one of the data points is the y-intercept

, then a is the initial value. Using a, substitute the
second point into the equation

, and solve for b.
3. If neither of the data points have the form

, substitute both points into two equations with
the form

. Solve the resulting system of two equations in
two unknowns to find a and b.
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4. Write the exponential function,

.

Example 5: Writing an Exponential
Function Given Its Graph

Find an equation for the exponential function graphed
in Figure 5.

Figure 5
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Solution

We can choose the y-intercept of the graph,

, as our first point. This gives us the initial value,

. Next, choose a point on the curve some distance away
from

that has integer coordinates. One such point is

.

Because we restrict ourselves to positive values of b,
we will use b = 2. Substitute a and b into the standard
form to yield the equation

.

Try It 5

Find an equation for the exponential function graphed in
Figure 6.
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Figure 6

Solution

How To: Given two points on the curve
of an exponential function, use a graphing
calculator to find the equation.

1. Press [STAT].
2. Clear any existing entries in columns L1 or L2.
3. In L1, enter the x-coordinates given.
4. In L2, enter the corresponding y-coordinates.
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5. Press [STAT] again. Cursor right to CALC, scroll
down to ExpReg (Exponential Regression), and
press [ENTER].

6. The screen displays the values of a and b in the
exponential equation

.

Example 6: Using a Graphing Calculator
to Find an Exponential Function

Use a graphing calculator to find the exponential
equation that includes the points

and

.
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Solution

Follow the guidelines above. First press [STAT],
[EDIT], [1: Edit…], and clear the lists L1 and L2. Next, in
the L1 column, enter the x-coordinates, 2 and 5. Do the
same in the L2 column for the y-coordinates, 24.8 and
198.4.

Now press [STAT], [CALC], [0: ExpReg] and press
[ENTER]. The values a = 6.2 and b = 2 will be displayed.
The exponential equation is

.

Try It 6

Use a graphing calculator to find the exponential
equation that includes the points (3, 75.98) and (6, 481.07).

Solution
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168. Use compound interest
formulas

Savings instruments in which earnings are continually reinvested,
such as mutual funds and retirement accounts, use compound
interest. The term compounding refers to interest earned not only
on the original value, but on the accumulated value of the account.

The annual percentage rate (APR) of an account, also called the
nominal rate, is the yearly interest rate earned by an investment
account. The term nominal is used when the compounding occurs a
number of times other than once per year. In fact, when interest is
compounded more than once a year, the effective interest rate ends
up being greater than the nominal rate! This is a powerful tool for
investing.

We can calculate the compound interest using the compound
interest formula, which is an exponential function of the variables
time t, principal P, APR r, and number of compounding periods in a
year n:

For example, observe the table below, which shows the result of
investing $1,000 at 10% for one year. Notice how the value of the
account increases as the compounding frequency increases.

Frequency Value after 1 year

Annually $1100

Semiannually $1102.50

Quarterly $1103.81

Monthly $1104.71

Daily $1105.16
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A General Note: The Compound
Interest Formula

Compound interest can be calculated using the
formula

where

• A(t) is the account value,
• t is measured in years,
• P is the starting amount of the account, often

called the principal, or more generally present
value,

• r is the annual percentage rate (APR) expressed
as a decimal, and

• n is the number of compounding periods in one
year.

Example 7: Calculating Compound
Interest

If we invest $3,000 in an investment account paying
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3% interest compounded quarterly, how much will the
account be worth in 10 years?

Solution

Because we are starting with $3,000, P = 3000. Our
interest rate is 3%, so r = 0.03. Because we are
compounding quarterly, we are compounding 4 times
per year, so n = 4. We want to know the value of the
account in 10 years, so we are looking for A(10), the value
when t = 10.

The account will be worth about $4,045.05 in 10 years.

Try It 7

An initial investment of $100,000 at 12% interest is
compounded weekly (use 52 weeks in a year). What will the
investment be worth in 30 years?

Solution
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Example 8: Using the Compound
Interest Formula to Solve for the
Principal

A 529 Plan is a college-savings plan that allows
relatives to invest money to pay for a child’s future
college tuition; the account grows tax-free. Lily wants to
set up a 529 account for her new granddaughter and
wants the account to grow to $40,000 over 18 years. She
believes the account will earn 6% compounded semi-
annually (twice a year). To the nearest dollar, how much
will Lily need to invest in the account now?

Solution

The nominal interest rate is 6%, so r = 0.06. Interest is
compounded twice a year, so k = 2.

We want to find the initial investment, P, needed so
that the value of the account will be worth $40,000 in 18
years. Substitute the given values into the compound
interest formula, and solve for P.
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Lily will need to invest $13,801 to have $40,000 in 18
years.

Try It 8

Refer to Example 8. To the nearest dollar, how much
would Lily need to invest if the account is compounded
quarterly?

Solution
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169. Evaluate exponential
functions with base e

As we saw earlier, the amount earned on an account increases as the
compounding frequency increases. The table below shows that the
increase from annual to semi-annual compounding is larger than
the increase from monthly to daily compounding. This might lead us
to ask whether this pattern will continue.

Examine the value of $1 invested at 100% interest for 1 year,
compounded at various frequencies.

Frequency

Annually

Semiannually

Quarterly

Monthly

Daily

Hourly

Once per
minute

Once per
second

These values appear to be approaching a limit as n increases
without bound. In fact, as n gets larger and larger, the expression
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approaches a number used so frequently in mathematics that it has
its own name: the letter . This value is an irrational number, which
means that its decimal expansion goes on forever without repeating.
Its approximation to six decimal places is shown below.

A General Note: The Number e

The letter e represents the irrational number

The letter e is used as a base for many real-world
exponential models. To work with base e, we use the
approximation,

. The constant was named by the Swiss mathematician
Leonhard Euler (1707–1783) who first investigated and
discovered many of its properties.

Example 7: Using a Calculator to Find
Powers of e

Calculate
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. Round to five decimal places.

Solution

On a calculator, press the button labeled

. The window shows [e^(]. Type 3.14 and then close
parenthesis, (]). Press [ENTER]. Rounding to 5 decimal
places,

. Caution: Many scientific calculators have an “Exp”
button, which is used to enter numbers in scientific
notation. It is not used to find powers of e.

Try It 9

Use a calculator to find

. Round to five decimal places.

Solution
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Investigating Continuous Growth

So far we have worked with rational bases for exponential functions.
For most real-world phenomena, however, e is used as the base for
exponential functions. Exponential models that use e as the base
are called continuous growth or decay models. We see these models
in finance, computer science, and most of the sciences, such as
physics, toxicology, and fluid dynamics.

A General Note: The Continuous
Growth/Decay Formula

For all real numbers t, and all positive numbers a and
r, continuous growth or decay is represented by the
formula

where

• a is the initial value,
• r is the continuous growth rate per unit time,
• and t is the elapsed time.

If r > 0, then the formula represents continuous
growth. If r < 0, then the formula represents continuous
decay.

For business applications, the continuous growth
formula is called the continuous compounding formula
and takes the form
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where

• P is the principal or the initial invested,
• r is the growth or interest rate per unit time,
• and t is the period or term of the investment.

How To: Given the initial value, rate of
growth or decay, and time t, solve a
continuous growth or decay function.

1. Use the information in the problem to
determine a, the initial value of the function.

2. Use the information in the problem to
determine the growth rate r.

1. If the problem refers to continuous
growth, then r > 0.

2. If the problem refers to continuous decay,
then r < 0.

3. Use the information in the problem to
determine the time t.

4. Substitute the given information into the
continuous growth formula and solve for A(t).
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Example 8: Calculating Continuous
Growth

A person invested $1,000 in an account earning a
nominal 10% per year compounded continuously. How
much was in the account at the end of one year?

Solution

Since the account is growing in value, this is a
continuous compounding problem with growth rate r =
0.10. The initial investment was $1,000, so P = 1000. We
use the continuous compounding formula to find the
value after t = 1 year:

The account is worth $1,105.17 after one year.

Evaluate exponential functions with base e | 1241



Try It 10

A person invests $100,000 at a nominal 12% interest per
year compounded continuously. What will be the value of
the investment in 30 years?

Solution

Example 9: Calculating Continuous
Decay

Radon-222 decays at a continuous rate of 17.3% per
day. How much will 100 mg of Radon-222 decay to in 3
days?

Solution

Since the substance is decaying, the rate, 17.3%, is
negative. So, r = –0.173. The initial amount of radon-222

1242 | Evaluate exponential functions with base e



was 100 mg, so a = 100. We use the continuous decay
formula to find the value after t = 3 days:

So 59.5115 mg of radon-222 will remain.

Try It 11

Using the data in Example 9, how much radon-222 will
remain after one year?

Solution
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170. Key Concepts & Glossary

Key Equations

definition
of the
exponential
function

definition
of
exponential
growth

compound
interest
formula

continuous
growth
formula

t is the number of unit time periods of growth
a is the starting amount (in the continuous compounding formula a is

replaced with P, the principal)
e is the mathematical constant,

Key Concepts

• An exponential function is defined as a function with a positive
constant other than 1 raised to a variable exponent.

• A function is evaluated by solving at a specific value.
• An exponential model can be found when the growth rate and

initial value are known.
• An exponential model can be found when the two data points
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from the model are known.
• An exponential model can be found using two data points from

the graph of the model.
• An exponential model can be found using two data points from

the graph and a calculator.
• The value of an account at any time t can be calculated using

the compound interest formula when the principal, annual
interest rate, and compounding periods are known.

• The initial investment of an account can be found using the
compound interest formula when the value of the account,
annual interest rate, compounding periods, and life span of the
account are known.

• The number e is a mathematical constant often used as the
base of real world exponential growth and decay models. Its
decimal approximation is

.
• Scientific and graphing calculators have the key

or

for calculating powers of e.
• Continuous growth or decay models are exponential models

that use e as the base. Continuous growth and decay models
can be found when the initial value and growth or decay rate
are known.

Glossary

annual percentage rate (APR)
the yearly interest rate earned by an investment account, also
called nominal rate
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compound interest
interest earned on the total balance, not just the principal

exponential growth
a model that grows by a rate proportional to the amount
present

nominal rate
the yearly interest rate earned by an investment account, also
called annual percentage rate
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171. Section Exercises

1. Explain why the values of an increasing exponential function will
eventually overtake the values of an increasing linear function.

2. Given a formula for an exponential function, is it possible to
determine whether the function grows or decays exponentially just
by looking at the formula? Explain.

3. The Oxford Dictionary defines the word nominal as a value that
is “stated or expressed but not necessarily corresponding exactly to
the real value.”1 Develop a reasonable argument for why the term
nominal rate is used to describe the annual percentage rate of an
investment account that compounds interest.

For the following exercises, identify whether the statement
represents an exponential function. Explain.

4. The average annual population increase of a pack of wolves is
25.

5. A population of bacteria decreases by a factor of

every 24 hours.
6. The value of a coin collection has increased by 3.25% annually

over the last 20 years.
7. For each training session, a personal trainer charges his clients

$5 less than the previous training session.
8. The height of a projectile at time t is represented by the

function

.
For the following exercises, consider this scenario: For each year

t, the population of a forest of trees is represented by the function

1. Oxford Dictionary. http://oxforddictionaries.com/us/
definition/american_english/nomina.
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. In a neighboring forest, the population of the same type of tree
is represented by the function

. (Round answers to the nearest whole number.)
9. Which forest’s population is growing at a faster rate?
10. Which forest had a greater number of trees initially? By how

many?
11. Assuming the population growth models continue to represent

the growth of the forests, which forest will have a greater number
of trees after 20 years? By how many?

12. Assuming the population growth models continue to represent
the growth of the forests, which forest will have a greater number
of trees after 100 years? By how many?

13. Discuss the above results from the previous four exercises.
Assuming the population growth models continue to represent the
growth of the forests, which forest will have the greater number
of trees in the long run? Why? What are some factors that might
influence the long-term validity of the exponential growth model?

For the following exercises, determine whether the equation
represents exponential growth, exponential decay, or neither.
Explain.

14.

15.

16.

17.

For the following exercises, find the formula for an exponential
function that passes through the two points given.

18.
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and

19.

and

20.

and

21.

and

22.

and

For the following exercises, determine whether the table could
represent a function that is linear, exponential, or neither. If it
appears to be exponential, find a function that passes through the
points.

23.

x 1 2 3 4

f(x) 70 40 10 -20

24.

x 1 2 3 4

h(x) 70 49 34.3 24.01

25.
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x 1 2 3 4

m(x) 80 61 42.9 25.61

26.

x 1 2 3 4

f(x) 10 20 40 80

27.

x 1 2 3 4

g(x) -3.25 2 7.25 12.5

For the following exercises, use the compound interest formula,

.
28. After a certain number of years, the value of an investment

account is represented by the equation

. What is the value of the account?
29. What was the initial deposit made to the account in the

previous exercise?
30. How many years had the account from the previous exercise

been accumulating interest?
31. An account is opened with an initial deposit of $6,500 and

earns 3.6% interest compounded semi-annually. What will the
account be worth in 20 years?

32. How much more would the account in the previous exercise
have been worth if the interest were compounding weekly?

33. Solve the compound interest formula for the principal, P.
34. Use the formula found in the previous exercise to calculate the

initial deposit of an account that is worth $14,472.74 after earning
5.5% interest compounded monthly for 5 years. (Round to the
nearest dollar.)
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35. How much more would the account in the previous two
exercises be worth if it were earning interest for 5 more years?

36. Use properties of rational exponents to solve the compound
interest formula for the interest rate, r.

37. Use the formula found in the previous exercise to calculate the
interest rate for an account that was compounded semi-annually,
had an initial deposit of $9,000 and was worth $13,373.53 after 10
years.

38. Use the formula found in the previous exercise to calculate the
interest rate for an account that was compounded monthly, had an
initial deposit of $5,500, and was worth $38,455 after 30 years.

For the following exercises, determine whether the equation
represents continuous growth, continuous decay, or neither.
Explain.

39.

40.

41.

42. Suppose an investment account is opened with an initial
deposit of $12,000 earning 7.2% interest compounded continuously.
How much will the account be worth after 30 years?

43. How much less would the account from Exercise 42 be worth
after 30 years if it were compounded monthly instead?

For the following exercises, evaluate each function. Round
answers to four decimal places, if necessary.

44.

, for

45.
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, for

46.

, for

47.

, for

48.

, for

49.

, for

50.

, for

For the following exercises, use a graphing calculator to find the
equation of an exponential function given the points on the curve.

51.

and

52.

and

53.
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and

54.

and

55.

and

56. The annual percentage yield (APY) of an investment account
is a representation of the actual interest rate earned on a
compounding account. It is based on a compounding period of one
year. Show that the APY of an account that compounds monthly
can be found with the formula

.
57. Repeat the previous exercise to find the formula for the APY

of an account that compounds daily. Use the results from this and
the previous exercise to develop a function

for the APY of any account that compounds n times per year.
58. Recall that an exponential function is any equation written

in the form

such that a and b are positive numbers and

. Any positive number b can be written as

for some value of n. Use this fact to rewrite the formula for an
exponential function that uses the number e as a base.

59. In an exponential decay function, the base of the exponent
is a value between 0 and 1. Thus, for some number
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, the exponential decay function can be written as

. Use this formula, along with the fact that

, to show that an exponential decay function takes the form

for some positive number n.
60. The formula for the amount A in an investment account with

a nominal interest rate r at any time t is given by

, where a is the amount of principal initially deposited into an
account that compounds continuously. Prove that the percentage
of interest earned to principal at any time t can be calculated with
the formula

.
61. The fox population in a certain region has an annual growth

rate of 9% per year. In the year 2012, there were 23,900 fox counted
in the area. What is the fox population predicted to be in the year
2020?

62. A scientist begins with 100 milligrams of a radioactive
substance that decays exponentially. After 35 hours, 50mg of the
substance remains. How many milligrams will remain after 54
hours?

63. In the year 1985, a house was valued at $110,000. By the year
2005, the value had appreciated to $145,000. What was the annual
growth rate between 1985 and 2005? Assume that the value
continued to grow by the same percentage. What was the value of
the house in the year 2010?

64. A car was valued at $38,000 in the year 2007. By 2013, the value
had depreciated to $11,000 If the car’s value continues to drop by the
same percentage, what will it be worth by 2017?

65. Jamal wants to save $54,000 for a down payment on a home.
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How much will he need to invest in an account with 8.2% APR,
compounding daily, in order to reach his goal in 5 years?

66. Kyoko has $10,000 that she wants to invest. Her bank has
several investment accounts to choose from, all compounding daily.
Her goal is to have $15,000 by the time she finishes graduate school
in 6 years. To the nearest hundredth of a percent, what should her
minimum annual interest rate be in order to reach her goal? (Hint:
solve the compound interest formula for the interest rate.)

67. Alyssa opened a retirement account with 7.25% APR in the year
2000. Her initial deposit was $13,500. How much will the account
be worth in 2025 if interest compounds monthly? How much more
would she make if interest compounded continuously?

68. An investment account with an annual interest rate of 7% was
opened with an initial deposit of $4,000 Compare the values of the
account after 9 years when the interest is compounded annually,
quarterly, monthly, and continuously.
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PART XXIV

GRAPHS OF EXPONENTIAL
FUNCTIONS
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172. Introduction to Graphs of
Exponential Functions

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Graph exponential functions.
• Graph exponential functions using transformations.

As we discussed in the previous section, exponential functions are
used for many real-world applications such as finance, forensics,
computer science, and most of the life sciences. Working with an
equation that describes a real-world situation gives us a method for
making predictions. Most of the time, however, the equation itself
is not enough. We learn a lot about things by seeing their pictorial
representations, and that is exactly why graphing exponential
equations is a powerful tool. It gives us another layer of insight for
predicting future events.
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173. Graph exponential
functions

Before we begin graphing, it is helpful to review the behavior of
exponential growth. Recall the table of values for a function of the
form

whose base is greater than one. We’ll use the function

. Observe how the output values in the table below change as the
input increases by 1.

x –3

Each output value is the product of the previous output and the
base, 2. We call the base 2 the constant ratio. In fact, for any
exponential function with the form

, b is the constant ratio of the function. This means that as the input
increases by 1, the output value will be the product of the base and
the previous output, regardless of the value of a.

Notice from the table that

• the output values are positive for all values of x;
• as x increases, the output values increase without bound; and
• as x decreases, the output values grow smaller, approaching

zero.

Figure 1 shows the exponential growth function
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.

Figure 1. Notice that the graph gets close to the x-axis, but never touches it.

The domain of

is all real numbers, the range is

, and the horizontal asymptote is

.
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To get a sense of the behavior of exponential decay, we can
create a table of values for a function of the form

whose base is between zero and one. We’ll use the function

. Observe how the output values in the table below change as the
input increases by 1.

x –3 –2 –1 0

8 4 2 1

Again, because the input is increasing by 1, each output value is
the product of the previous output and the base, or constant ratio

.
Notice from the table that

• the output values are positive for all values of x;
• as x increases, the output values grow smaller, approaching

zero; and
• as x decreases, the output values grow without bound.

The graph shows the exponential decay function,

.
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Figure 2. The domain of

is all real numbers, the range is

, and the horizontal asymptote is

.
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A General Note: Characteristics of the
Graph of the Parent Function f(x) = bx

An exponential function with the form

,

0\\" title="b>0\\" class="latex mathjax">,

, has these characteristics:

• one-to-one function
• horizontal asymptote:

• domain:

• range:

• x-intercept: none
• y-intercept:

• increasing if

1\\" title="b>1\\" class="latex mathjax">
• decreasing if

Compare the graphs of exponential growth and decay
functions.
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1 and the second graph is of the same function when b
is 01. Both graphs have the points (0, 1) and (1, b)
labeled." width="731" height="407" data-media-

type="image/jpg">Figure 3

How To: Given an exponential
function of the form

, graph the function.

1. Create a table of points.
2. Plot at least 3 point from the table,
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including the y-intercept

.
3. Draw a smooth curve through the

points.
4. State the domain,

, the range,

, and the horizontal asymptote,

.

Example 1: Sketching the Graph
of an Exponential Function of the
Form f(x) = bx

Sketch a graph of

. State the domain, range, and asymptote.
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Solution

Before graphing, identify the behavior and
create a table of points for the graph.

• Since b = 0.25 is between zero and
one, we know the function is
decreasing. The left tail of the graph
will increase without bound, and the
right tail will approach the asymptote
y = 0.

• Create a table of points.

x –
3

–
2

–
1 0 1 2

6
4

1
6 4 1 0

.25
0.0

625

• Plot the y-intercept,

, along with two other points. We can
use

and
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.

Draw a smooth curve connecting the
points.

Figure 4. The domain is

; the range is

; the horizontal asymptote is

.
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Try It 1

Sketch the graph of

. State the domain, range, and asymptote.

Solution
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174. Graph exponential
functions using
transformations

Transformations of exponential graphs behave similarly to those of
other functions. Just as with other parent functions, we can apply
the four types of transformations—shifts, reflections, stretches, and
compressions—to the parent function

without loss of shape. For instance, just as the quadratic function
maintains its parabolic shape when shifted, reflected, stretched,
or compressed, the exponential function also maintains its general
shape regardless of the transformations applied.

Graphing a Vertical Shift

The first transformation occurs when we add a constant d to the
parent function

, giving us a vertical shift d units in the same direction as the
sign. For example, if we begin by graphing a parent function,

, we can then graph two vertical shifts alongside it, using

: the upward shift,

and the downward shift,

. Both vertical shifts are shown in Figure 5.
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Figure 5

Observe the results of shifting

vertically:

• The domain,
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remains unchanged.
• When the function is shifted up 3 units to

:

◦ The y-intercept shifts up 3 units to

.
◦ The asymptote shifts up 3 units to

.
◦ The range becomes

.
• When the function is shifted down 3 units to

:

◦ The y-intercept shifts down 3 units to

.
◦ The asymptote also shifts down 3 units to

.
◦ The range becomes

.

Graphing a Horizontal Shift

The next transformation occurs when we add a constant c to the
input of the parent function
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, giving us a horizontal shift c units in the opposite direction of
the sign. For example, if we begin by graphing the parent function

, we can then graph two horizontal shifts alongside it, using

: the shift left,

, and the shift right,

. Both horizontal shifts are shown in Figure 6.

Figure 6

Observe the results of shifting

horizontally:

• The domain,

, remains unchanged.
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• The asymptote,

, remains unchanged.
• The y-intercept shifts such that:

◦ When the function is shifted left 3 units to

, the y-intercept becomes

. This is because

, so the initial value of the function is 8.
◦ When the function is shifted right 3 units to

, the y-intercept becomes

. Again, see that

, so the initial value of the function is

.

A General Note: Shifts of the Parent
Function

For any constants c and d, the function
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shifts the parent function

• vertically d units, in the same direction of the
sign of d.

• horizontally c units, in the opposite direction of
the sign of c.

• The y-intercept becomes

.
• The horizontal asymptote becomes y = d.
• The range becomes

.
• The domain,

, remains unchanged.

How To: Given an exponential function
with the form

, graph the translation.

1. Draw the horizontal asymptote y = d.
2. Identify the shift as
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. Shift the graph of

left c units if c is positive, and right units if c is
negative.

3. Shift the graph of

up d units if d is positive, and down d units if d is
negative.

4. State the domain,

, the range,

, and the horizontal asymptote

.

Example 1: Graphing a Shift of an
Exponential Function

Graph

. State the domain, range, and asymptote.
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Solution

We have an exponential equation of the form

, with

,

, and

.

Draw the horizontal asymptote

, so draw

.

Identify the shift as

, so the shift is

.

Shift the graph of

Graph exponential functions using transformations | 1277



left 1 units and down 3 units.

Figure 7. The domain is

; the range is

; the horizontal asymptote is

.
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Try It 2

Graph

. State domain, range, and asymptote.

Solution

How To: Given an equation of the form

for

, use a graphing calculator to approximate
the solution.

• Press [Y=]. Enter the given exponential equation
in the line headed “Y1=.”

• Enter the given value for

in the line headed “Y2=.”
• Press [WINDOW]. Adjust the y-axis so that it

includes the value entered for “Y2=.”
• Press [GRAPH] to observe the graph of the

exponential function along with the line for the
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specified value of

.
• To find the value of x, we compute the point of

intersection. Press [2ND] then [CALC]. Select
“intersect” and press [ENTER] three times. The
point of intersection gives the value of x for the
indicated value of the function.

Example 2: Approximating the Solution
of an Exponential Equation

Solve

graphically. Round to the nearest thousandth.
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Solution

Press [Y=] and enter

next to Y1=. Then enter 42 next to Y2=. For a window,
use the values –3 to 3 for x and –5 to 55 for y. Press
[GRAPH]. The graphs should intersect somewhere near
x = 2.

For a better approximation, press [2ND] then [CALC].
Select [5: intersect] and press [ENTER] three times. The
x-coordinate of the point of intersection is displayed as
2.1661943. (Your answer may be different if you use a
different window or use a different value for Guess?) To
the nearest thousandth,

.

Try It 3

Solve

graphically. Round to the nearest thousandth.

Solution
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Graphing a Stretch or Compression

While horizontal and vertical shifts involve adding constants to the
input or to the function itself, a stretch or compression occurs
when we multiply the parent function

by a constant

0\\" title="|a|>0\\" class="latex mathjax">. For example, if we begin
by graphing the parent function

, we can then graph the stretch, using

, to get

as shown on the left in Figure 8, and the compression, using

, to get

as shown on the right in Figure 8.

Figure 8. (a)
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stretches the graph of

vertically by a factor of 3. (b)

compresses the graph of

vertically by a factor of

.

A General Note: Stretches and
Compressions of the Parent Function f(x)
= bx

For any factor a > 0, the function

• is stretched vertically by a factor of a if

1\\" title="|a|>1\\" class="latex mathjax">.
• is compressed vertically by a factor of a if

.
• has a y-intercept of

.
• has a horizontal asymptote at
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, a range of

, and a domain of

, which are unchanged from the parent function.

Example 3: Graphing the Stretch of an
Exponential Function

Sketch a graph of

. State the domain, range, and asymptote.

Solution

Before graphing, identify the behavior and key points
on the graph.
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• Since

is between zero and one, the left tail of the graph
will increase without bound as x decreases, and
the right tail will approach the x-axis as
x increases.

• Since a = 4, the graph of

will be stretched by a factor of 4.
• Create a table of points.

x –
3

–
2

–
1 0 1

3
2

1
6 8 4 2

• Plot the y-intercept,

, along with two other points. We can use

and

.
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Draw a smooth curve connecting the points.

Figure 9. The domain is

; the range is

; the horizontal asymptote is y = 0.

Try It 4

Sketch the graph of
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. State the domain, range, and asymptote.

Solution

Graphing Reflections

In addition to shifting, compressing, and stretching a graph, we can
also reflect it about the x-axis or the y-axis. When we multiply
the parent function

by –1, we get a reflection about the x-axis. When we multiply the
input by –1, we get a reflection about the y-axis. For example,
if we begin by graphing the parent function

, we can then graph the two reflections alongside it. The reflection
about the x-axis,

, is shown on the left side, and the reflection about the y-axis

, is shown on the right side.
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Figure 10.
(a)

reflects the graph of

about the x-axis.
(b)

reflects the graph of

about the y-axis.
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A General Note: Reflections of the
Parent Function f(x) = bx

The function

• reflects the parent function

about the x-axis.
• has a y-intercept of

.
• has a range of

• has a horizontal asymptote at

and domain of

, which are unchanged from the parent function.

The function

• reflects the parent function

about the y-axis.
• has a y-intercept of

, a horizontal asymptote at
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, a range of

, and a domain of

, which are unchanged from the parent function.

Example 4: Writing and Graphing the
Reflection of an Exponential Function

Find and graph the equation for a function,

, that reflects

about the x-axis. State its domain, range, and
asymptote.
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Solution

Since we want to reflect the parent function

about the x-axis, we multiply

by –1 to get,

. Next we create a table of points.

–
3

–
2

–
1 0

–
64

–
16

–
4

–
1 .25

Plot the y-intercept,

, along with two other points. We can use

and

.
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Draw a smooth curve connecting the points:

Figure 11. The domain is

; the range is

; the horizontal asymptote is

.

Try It 5

Find and graph the equation for a function,
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, that reflects

about the y-axis. State its domain, range, and asymptote.

Solution

Summarizing Translations of the Exponential
Function

Now that we have worked with each type of translation for the
exponential function, we can summarize them to arrive at the
general equation for translating exponential functions.

Translations of the Parent Function

Translation

Shift

• Horizontally c units to the left
• Vertically d units up

Stretch and Compress

• Stretch if |a|>1
• Compression if 0<|a|<1

Reflect about the x-axis

Reflect about the y-axis

General equation for all translations
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A General Note: Translations of
Exponential Functions

A translation of an exponential function has the form

Where the parent function,

,

1\\" title="b>1\\" class="latex mathjax">, is

• shifted horizontally c units to the left.
• stretched vertically by a factor of |a| if |a| > 0.
• compressed vertically by a factor of |a| if 0 < |a| <

1.
• shifted vertically d units.
• reflected about the x-axis when a < 0.

Note the order of the shifts, transformations, and
reflections follow the order of operations.

Example 5: Writing a Function from a
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Description

Write the equation for the function described below.
Give the horizontal asymptote, the domain, and the
range.

•
is vertically stretched by a factor of 2, reflected
across the y-axis, and then shifted up 4 units.

Solution

We want to find an equation of the general form

. We use the description provided to find a, b, c, and d.

• We are given the parent function

, so b = e.
• The function is stretched by a factor of 2, so a =

2.
• The function is reflected about the y-axis. We

replace x with –x to get:
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.
• The graph is shifted vertically 4 units, so d = 4.

Substituting in the general form we get,

The domain is

; the range is

; the horizontal asymptote is

.

Try It 6

Write the equation for function described below. Give the
horizontal asymptote, the domain, and the range.

•
is compressed vertically by a factor of

, reflected across the x-axis and then shifted down
2 units.

Solution
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175. Key Concepts

Key Equations

General Form for the Translation of the Parent Function

Key Concepts

• The graph of the function

has a y-intercept at

, domain

, range

, and horizontal asymptote

.
• If

, the function is increasing. The left tail of the graph will
approach the asymptote

, and the right tail will increase without bound.
• If 0 < b < 1, the function is decreasing. The left tail of the graph

will increase without bound, and the right tail will approach
the asymptote
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.
• The equation

represents a vertical shift of the parent function

.
• The equation

represents a horizontal shift of the parent function

.
• Approximate solutions of the equation

can be found using a graphing calculator.
• The equation

, where

, represents a vertical stretch if or compression if

of the parent function

.
• When the parent function

is multiplied by –1, the result,

, is a reflection about the x-axis. When the input is multiplied
by –1, the result,

, is a reflection about the y-axis.
• All translations of the exponential function can be summarized

by the general equation
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.
• Using the general equation

, we can write the equation of a function given its description.
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176. Section Exercises

1. What role does the horizontal asymptote of an exponential
function play in telling us about the end behavior of the graph?

2. What is the advantage of knowing how to recognize
transformations of the graph of a parent function algebraically?

3. The graph of

is reflected about the y-axis and stretched vertically by a factor
of 4. What is the equation of the new function,

? State its y-intercept, domain, and range.
4. The graph of

is reflected about the y-axis and compressed vertically by a factor of

. What is the equation of the new function,

? State its y-intercept, domain, and range.
5. The graph of

is reflected about the x-axis and shifted upward 7 units. What is
the equation of the new function,

? State its y-intercept, domain, and range.
6. The graph of

is shifted right 3 units, stretched vertically by a factor of 2, reflected
about the x-axis, and then shifted downward 3 units. What is the
equation of the new function,
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? State its y-intercept (to the nearest thousandth), domain, and
range.

7. The graph of

is shifted left 2 units, stretched vertically by a factor of 4, reflected
about the x-axis, and then shifted downward 4 units. What is the
equation of the new function,

? State its y-intercept, domain, and range.
For the following exercises, graph the function and its reflection

about the y-axis on the same axes, and give the y-intercept.
8.

9.

10.

For the following exercises, graph each set of functions on the
same axes.

11.

,

, and

12.

,

, and

For the following exercises, match each function with one of the
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graphs pictured below.

13.

14.

15.

16.

17.

18.

For the following exercises, use the graphs shown below. All have
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the form

.

19. Which graph has the largest value for b?
20. Which graph has the smallest value for b?
21. Which graph has the largest value for a?
22. Which graph has the smallest value for a?
For the following exercises, graph the function and its reflection

about the x-axis on the same axes.
23.

24.

25.
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For the following exercises, graph the transformation of

. Give the horizontal asymptote, the domain, and the range.
26.

27.

28.

For the following exercises, describe the end behavior of the
graphs of the functions.

29.

30.

31.

For the following exercises, start with the graph of

. Then write a function that results from the given transformation.
32. Shift f(x) 4 units upward
33. Shift f(x) 3 units downward
34. Shift f(x) 2 units left
35. Shift f(x) 5 units right
36. Reflect f(x) about the x-axis
37. Reflect f(x) about the y-axis
For the following exercises, each graph is a transformation of

. Write an equation describing the transformation.
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38.

39.
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40.

For the following exercises, find an exponential equation for the
graph.
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41.

42.
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For the following exercises, evaluate the exponential functions for
the indicated value of x.

43.

for

.
44.

for

.
45.

for

.
For the following exercises, use a graphing calculator to

approximate the solutions of the equation. Round to the nearest
thousandth.

.
46.

47.

48.

49.

50.
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51. Explore and discuss the graphs of

and

. Then make a conjecture about the relationship between the graphs
of the functions

and

for any real number

.
52. Prove the conjecture made in the previous exercise.
53. Explore and discuss the graphs of

,

, and

. Then make a conjecture about the relationship between the graphs
of the functions

and

for any real number n and real number

.
54. Prove the conjecture made in the previous exercise.
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PART XXV

LOGARITHMIC
FUNCTIONS
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177. Introduction to
Logarithmic Functions

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Convert from logarithmic to exponential form.
• Convert from exponential to logarithmic form.
• Evaluate logarithms.
• Use common logarithms.
• Use natural logarithms.

Figure 1. Devastation of March 11, 2011 earthquake in Honshu, Japan. (credit:
Daniel Pierce)
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In 2010, a major earthquake struck Haiti, destroying or damaging
over 285,000 homes.1 One year later, another, stronger earthquake
devastated Honshu, Japan, destroying or damaging over 332,000
buildings,2 like those shown in the picture above. Even though both
caused substantial damage, the earthquake in 2011 was 100 times
stronger than the earthquake in Haiti. How do we know? The
magnitudes of earthquakes are measured on a scale known as the
Richter Scale. The Haitian earthquake registered a 7.0 on the Richter
Scale3 whereas the Japanese earthquake registered a 9.0.4

The Richter Scale is a base-ten logarithmic scale. In other words,
an earthquake of magnitude 8 is not twice as great as an earthquake
of magnitude 4. It is

times as great! In this lesson, we will investigate the nature of the
Richter Scale and the base-ten function upon which it depends.

1. http://earthquake.usgs.gov/earthquakes/eqinthenews/
2010/us2010rja6/#summary. Accessed 3/4/2013.

2. http://earthquake.usgs.gov/earthquakes/eqinthenews/
2011/usc0001xgp/#summary. Accessed 3/4/2013.

3. http://earthquake.usgs.gov/earthquakes/eqinthenews/
2010/us2010rja6/. Accessed 3/4/2013.

4. http://earthquake.usgs.gov/earthquakes/eqinthenews/
2011/usc0001xgp/#details. Accessed 3/4/2013.
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178. Convert from
logarithmic to exponential
form

In order to analyze the magnitude of earthquakes or compare the
magnitudes of two different earthquakes, we need to be able to
convert between logarithmic and exponential form. For example,
suppose the amount of energy released from one earthquake were
500 times greater than the amount of energy released from another.
We want to calculate the difference in magnitude. The equation
that represents this problem is

, where x represents the difference in magnitudes on the Richter
Scale. How would we solve for x?

We have not yet learned a method for solving exponential
equations. None of the algebraic tools discussed so far is sufficient
to solve

. We know that

and

, so it is clear that x must be some value between 2 and 3, since

is increasing. We can examine a graph to better estimate the
solution.
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Figure 2

Estimating from a graph, however, is imprecise. To find an algebraic
solution, we must introduce a new function. Observe that the graph
above passes the horizontal line test. The exponential function

is one-to-one, so its inverse,

is also a function. As is the case with all inverse functions, we simply
interchange x and y and solve for y to find the inverse function.
To represent y as a function of x, we use a logarithmic function
of the form
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. The base b logarithm of a number is the exponent by which we
must raise b to get that number.

We read a logarithmic expression as, “The logarithm with base
b of x is equal to y,” or, simplified, “log base b of x is y.” We can also
say, “b raised to the power of y is x,” because logs are exponents. For
example, the base 2 logarithm of 32 is 5, because 5 is the exponent
we must apply to 2 to get 32. Since

, we can write

. We read this as “log base 2 of 32 is 5.”
We can express the relationship between logarithmic form and its

corresponding exponential form as follows:

0,b\ne 1\\" title="{\mathrm{log}}_{b}\left(x\right)=y\
Leftrightarrow {b}^{y}=x,\text{}b>0,b\ne 1\\" class="latex

mathjax">

Note that the base b is always positive.

Because logarithm is a function, it is most correctly written as

, using parentheses to denote function evaluation, just as we would
with

. However, when the input is a single variable or number, it is
common to see the parentheses dropped and the expression
written without parentheses, as

. Note that many calculators require parentheses around the x.
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We can illustrate the notation of logarithms as follows:

Notice that, comparing the logarithm function and the
exponential function, the input and the output are switched. This
means and

are inverse functions.

A General Note: Definition of the
Logarithmic Function

A logarithm base b of a positive number x satisfies the
following definition.

For

0,b>0,b\ne 1\\" title="x>0,b>0,b\ne 1\\" class="latex
mathjax">,

where,

• we read

as, “the logarithm with base b of x” or the “log
base b of x.”
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• the logarithm y is the exponent to which b must
be raised to get x.

Also, since the logarithmic and exponential functions
switch the x and y values, the domain and range of the
exponential function are interchanged for the
logarithmic function. Therefore,

• the domain of the logarithm function with base

.
• the range of the logarithm function with base

.

Q & A

Can we take the logarithm of a negative number?

No. Because the base of an exponential function is
always positive, no power of that base can ever be
negative. We can never take the logarithm of a negative
number. Also, we cannot take the logarithm of zero.
Calculators may output a log of a negative number when
in complex mode, but the log of a negative number is not a
real number.
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How To: Given an equation in
logarithmic form

, convert it to exponential form.

1. Examine the equation

and identify b, y, and x.
2. Rewrite

as

.

Example 1: Converting from
Logarithmic Form to Exponential Form

Write the following logarithmic equations in
exponential form.

1.
2.
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Solution

First, identify the values of b, y, and x. Then, write the
equation in the form

.

1.
Here,

. Therefore, the equation

is equivalent to

.

2.
Here, b = 3, y = 2, and x = 9. Therefore, the

equation

is equivalent to

.
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Try It 1

Write the following logarithmic equations in exponential
form.

a.

b.

Solution
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179. Convert from
exponential to logarithmic
form

To convert from exponents to logarithms, we follow the same steps
in reverse. We identify the base b, exponent x, and output y. Then
we write

.

Example 2: Converting from
Exponential Form to Logarithmic Form

Write the following exponential equations in
logarithmic form.

1.
2.
3.
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Solution

First, identify the values of b, y, and x. Then, write the
equation in the form

.

1.
Here, b = 2, x = 3, and y = 8. Therefore, the

equation

is equivalent to

.

2.
Here, b = 5, x = 2, and y = 25. Therefore, the

equation

is equivalent to

.

3.
Here, b = 10, x = –4, and

. Therefore, the equation

is equivalent to
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.

Try It 2

Write the following exponential equations in logarithmic
form.

a.

b.

c.

Solution
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180. Evaluate logarithms

Knowing the squares, cubes, and roots of numbers allows us to
evaluate many logarithms mentally. For example, consider

. We ask, “To what exponent must 2 be raised in order to get 8?”
Because we already know

, it follows that

.
Now consider solving

and

mentally.

• We ask, “To what exponent must 7 be raised in order to get
49?” We know

. Therefore,

• We ask, “To what exponent must 3 be raised in order to get
27?” We know

. Therefore,

Even some seemingly more complicated logarithms can be
evaluated without a calculator. For example, let’s evaluate

mentally.
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• We ask, “To what exponent must

be raised in order to get

? ” We know

and

, so

. Therefore,

.

How To: Given a logarithm of the form

, evaluate it mentally.

1. Rewrite the argument x as a power of b:

.
2. Use previous knowledge of powers of b identify

y by asking, “To what exponent should b be raised
in order to get x?”
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Example 3: Solving Logarithms Mentally

Solve

without using a calculator.

Solution

First we rewrite the logarithm in exponential form:

. Next, we ask, “To what exponent must 4 be raised in
order to get 64?”

We know

Therefore,
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Try It 3

Solve

without using a calculator.

Solution

Example 4: Evaluating the Logarithm of
a Reciprocal

Evaluate

without using a calculator.

Solution

First we rewrite the logarithm in exponential form:
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. Next, we ask, “To what exponent must 3 be raised in
order to get

“?

We know

, but what must we do to get the reciprocal,

? Recall from working with exponents that

. We use this information to write

Therefore,

.

Try It 4

Evaluate

without using a calculator.

Solution
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181. Use common logarithms

The most frequently used base for logarithms is e. Base e logarithms
are important in calculus and some scientific applications; they
are called natural logarithms. The base e logarithm,

, has its own notation,

.
Most values of

can be found only using a calculator. The major exception is that,
because the logarithm of 1 is always 0 in any base,

. For other natural logarithms, we can use the

key that can be found on most scientific calculators. We can also
find the natural logarithm of any power of e using the inverse
property of logarithms.

A General Note: Definition of the
Natural Logarithm

A natural logarithm is a logarithm with base e. We
write

simply as
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. The natural logarithm of a positive number x satisfies
the following definition.

For

0\\" title="x>0\\" class="latex mathjax">,

We read

as, “the logarithm with base e of x” or “the natural
logarithm of x.”

The logarithm y is the exponent to which e must be
raised to get x.

Since the functions

and

are inverse functions,

for all x and

for x > 0.
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How To: Given a natural logarithm with
the form

, evaluate it using a calculator.

1. Press [LN].
2. Enter the value given for x, followed by [ ) ].
3. Press [ENTER].

Example 5: Evaluating a Natural
Logarithm Using a Calculator

Evaluate

to four decimal places using a calculator.
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Solution

• Press [LN].
• Enter 500, followed by [ ) ].
• Press [ENTER].

Rounding to four decimal places,

Try It 5

Evaluate

.

Solution
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182. Use natural logarithms

The most frequently used base for logarithms is e. Base e logarithms
are important in calculus and some scientific applications; they
are called natural logarithms. The base e logarithm,

, has its own notation,

.
Most values of

can be found only using a calculator. The major exception is that,
because the logarithm of 1 is always 0 in any base,

. For other natural logarithms, we can use the

key that can be found on most scientific calculators. We can also
find the natural logarithm of any power of e using the inverse
property of logarithms.

A General Note: Definition of the
Natural Logarithm

A natural logarithm is a logarithm with base e. We
write

simply as
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. The natural logarithm of a positive number x satisfies
the following definition.

For

0\\" title="x>0\\" class="latex mathjax">,

We read

as, “the logarithm with base e of x” or “the natural
logarithm of x.”

The logarithm y is the exponent to which e must be
raised to get x.

Since the functions

and

are inverse functions,

for all x and

for

0\\" title="x>0\\" class="latex mathjax">.
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How To: Given a natural logarithm with
the form

, evaluate it using a calculator.

1. Press [LN].
2. Enter the value given for x, followed by [ ) ].
3. Press [ENTER].

Example 6: Evaluating a Natural
Logarithm Using a Calculator

Evaluate

to four decimal places using a calculator.
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Solution

• Press [LN].
• Enter 500, followed by [ ) ].
• Press [ENTER].

Rounding to four decimal places,

Try It 6

Evaluate

.

Solution
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183. Key Concepts & Glossary

Key Equations

Definition
of the
logarithmic
function

For

,

if and only if

.

Definition
of the
common
logarithm

For

,

if and only if

.

Definition
of the
natural
logarithm

For

,

if and only if

.

Key Concepts

• The inverse of an exponential function is a logarithmic
function, and the inverse of a logarithmic function is an
exponential function.

• Logarithmic equations can be written in an equivalent
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exponential form, using the definition of a logarithm.
• Exponential equations can be written in their equivalent

logarithmic form using the definition of a logarithm.
• Logarithmic functions with base b can be evaluated mentally

using previous knowledge of powers of b.
• Common logarithms can be evaluated mentally using previous

knowledge of powers of 10.
• When common logarithms cannot be evaluated mentally, a

calculator can be used.
• Real-world exponential problems with base 10 can be

rewritten as a common logarithm and then evaluated using a
calculator.

• Natural logarithms can be evaluated using a calculator.

Glossary

common logarithm
the exponent to which 10 must be raised to get x;

is written simply as

.
logarithm

the exponent to which b must be raised to get x; written

natural logarithm
the exponent to which the number e must be raised to get x;

is written as

.
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184. Section Exercises

1. What is a base b logarithm? Discuss the meaning by interpreting
each part of the equivalent equations

and

for

.
2. How is the logarithmic function

related to the exponential function

? What is the result of composing these two functions?
3. How can the logarithmic equation

be solved for x using the properties of exponents?
4. Discuss the meaning of the common logarithm. What is its

relationship to a logarithm with base b, and how does the notation
differ?

5. Discuss the meaning of the natural logarithm. What is its
relationship to a logarithm with base b, and how does the notation
differ?

For the following exercises, rewrite each equation in exponential
form.

6.

7.

8.
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9.

10.

11.

12.

13.

14.

15.

For the following exercises, rewrite each equation in logarithmic
form.

16.

17.

18.

19.

20.

21.

22.

23.
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24.

25.

For the following exercises, solve for x by converting the
logarithmic equation to exponential form.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

For the following exercises, use the definition of common and
natural logarithms to simplify.

36.

37.

38.
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39.

40.

41.

For the following exercises, evaluate the base b logarithmic
expression without using a calculator.

42.

43.

44.

45.

For the following exercises, evaluate the common logarithmic
expression without using a calculator.

46.

47.

48.

49.

For the following exercises, evaluate the natural logarithmic
expression without using a calculator.

50.

51.
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52.

53.

For the following exercises, evaluate each expression using a
calculator. Round to the nearest thousandth.

54.

55.

56.

57.

58.

59. Is x = 0 in the domain of the function

? If so, what is the value of the function when x = 0? Verify the result.
60. Is

in the range of the function

? If so, for what value of x? Verify the result.
61. Is there a number x such that

? If so, what is that number? Verify the result.
62. Is the following true:

? Verify the result.
63. Is the following true:
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? Verify the result.
64. The exposure index EI for a 35 millimeter camera is a

measurement of the amount of light that hits the film. It is
determined by the equation

, where f is the “f-stop” setting on the camera, and t is the exposure
time in seconds. Suppose the f-stop setting is 8 and the desired
exposure time is 2 seconds. What will the resulting exposure index
be?

65. Refer to the previous exercise. Suppose the light meter on a
camera indicates an EI of –2, and the desired exposure time is 16
seconds. What should the f-stop setting be?

66. The intensity levels I of two earthquakes measured on a
seismograph can be compared by the formula

where M is the magnitude given by the Richter Scale. In August
2009, an earthquake of magnitude 6.1 hit Honshu, Japan. In March
2011, that same region experienced yet another, more devastating
earthquake, this time with a magnitude of 9.0.1 How many times
greater was the intensity of the 2011 earthquake? Round to the
nearest whole number.

1. http://earthquake.usgs.gov/earthquakes/world/
historical.php. Accessed 3/4/2014.
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PART XXVI

GRAPHS OF
LOGARITHMIC
FUNCTIONS
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185. Introduction to Graphs
of Logarithmic Functions

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Identify the domain of a logarithmic function.
• Graph logarithmic functions.

In Graphs of Exponential Functions, we saw how creating a
graphical representation of an exponential model gives us another
layer of insight for predicting future events. How do logarithmic
graphs give us insight into situations? Because every logarithmic
function is the inverse function of an exponential function, we can
think of every output on a logarithmic graph as the input for the
corresponding inverse exponential equation. In other words,
logarithms give the cause for an effect.

To illustrate, suppose we invest $2500 in an account that offers an
annual interest rate of 5%, compounded continuously. We already
know that the balance in our account for any year t can be found
with the equation

.
But what if we wanted to know the year for any balance? We

would need to create a corresponding new function by
interchanging the input and the output; thus we would need to
create a logarithmic model for this situation. By graphing the model,

Introduction to Graphs of
Logarithmic Functions | 1349



we can see the output (year) for any input (account balance). For
instance, what if we wanted to know how many years it would take
for our initial investment to double? Figure 1 shows this point on the
logarithmic graph.

Figure 1

In this section we will discuss the values for which a logarithmic
function is defined, and then turn our attention to graphing the
family of logarithmic functions.
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186. Identify the domain of a
logarithmic function

Before working with graphs, we will take a look at the domain (the
set of input values) for which the logarithmic function is defined.

Recall that the exponential function is defined as

for any real number x and constant

0\\" title="b>0\\" class="latex mathjax">,

, where

• The domain of y is

.
• The range of y is

.

In the last section we learned that the logarithmic function

is the inverse of the exponential function

. So, as inverse functions:

• The domain of

is the range of

:
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.
• The range of

is the domain of

:

.

Transformations of the parent function

behave similarly to those of other functions. Just as with other
parent functions, we can apply the four types of
transformations—shifts, stretches, compressions, and
reflections—to the parent function without loss of shape.

In Graphs of Exponential Functions we saw that certain
transformations can change the range of

. Similarly, applying transformations to the parent function

can change the domain. When finding the domain of a logarithmic
function, therefore, it is important to remember that the domain
consists only of positive real numbers. That is, the argument of the
logarithmic function must be greater than zero.

For example, consider

. This function is defined for any values of x such that the argument,
in this case

, is greater than zero. To find the domain, we set up an inequality
and solve for x:

0\hfill & \text{Show the argument greater than zero}.\hfill \\
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2x>3\hfill & \text{Add 3}.\hfill \\ x>1.5\hfill & \text{Divide by
2}.\hfill \end{cases}\\" title="\begin{cases}2x - 3>0\hfill &

\text{Show the argument greater than zero}.\hfill \\ 2x>3\hfill &
\text{Add 3}.\hfill \\ x>1.5\hfill & \text{Divide by 2}.\hfill

\end{cases}\\" class="latex mathjax">

In interval notation, the domain of

is

.

How To: Given a logarithmic function,
identify the domain.

1. Set up an inequality showing the argument
greater than zero.

2. Solve for x.
3. Write the domain in interval notation.
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Example 1: Identifying the Domain of a
Logarithmic Shift

What is the domain of

?

Solution

The logarithmic function is defined only when the
input is positive, so this function is defined when

0\\" title="x+3>0\\" class="latex mathjax">. Solving this
inequality,

0\hfill & \text{The input must be positive}.\hfill \\
x>-3\hfill & \text{Subtract 3}.\hfill \end{cases}\\"

title="\begin{cases}x+3>0\hfill & \text{The input must
be positive}.\hfill \\ x>-3\hfill & \text{Subtract

3}.\hfill \end{cases}\\" class="latex mathjax">
The domain of
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is

.

Try It 1

What is the domain of

?

Solution

Example 2: Identifying the Domain of a
Logarithmic Shift and Reflection

What is the domain of

?
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Solution

The logarithmic function is defined only when the
input is positive, so this function is defined when

0\\" title="5 - 2x>0\\" class="latex mathjax">. Solving
this inequality,

0\hfill & \text{The input must be positive}.\hfill \\
-2x>-5\hfill & \text{Subtract }5.\hfill \\

x<\frac{5}{2}\hfill & \text{Divide by }-2\text{ and
switch the inequality}.\hfill \end{cases}\\"

title="\begin{cases}5 - 2x>0\hfill & \text{The input
must be positive}.\hfill \\ -2x>-5\hfill & \text{Subtract

}5.\hfill \\ x<\frac{5}{2}\hfill & \text{Divide by }-2\
text{ and switch the inequality}.\hfill \end{cases}\\"

class="latex mathjax">
The domain of

is

.
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Try It 2

What is the domain of

?

Solution
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187. Graph logarithmic
functions

Now that we have a feel for the set of values for which a logarithmic
function is defined, we move on to graphing logarithmic functions.
The family of logarithmic functions includes the parent function

along with all its transformations: shifts, stretches, compressions,
and reflections.

We begin with the parent function

. Because every logarithmic function of this form is the inverse
of an exponential function with the form

, their graphs will be reflections of each other across the line

. To illustrate this, we can observe the relationship between the
input and output values of

and its equivalent

in the table below.

x –3

–3

Using the inputs and outputs from the table above, we can build
another table to observe the relationship between points on the
graphs of the inverse functions
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and

.

As we’d expect, the x– and y-coordinates are reversed for the
inverse functions. The figure below shows the graph of f and g.

Figure 2. Notice that the graphs of

and

are reflections about the line y = x.
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Observe the following from the graph:

•
has a y-intercept at

and

has an x-intercept at

.
• The domain of

,

, is the same as the range of

.
• The range of

,

, is the same as the domain of

.

A General Note: Characteristics of the
Graph of the Parent Function, f(x) =
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logb(x)

For any real number x and constant b > 0,

, we can see the following characteristics in the graph of

:

• one-to-one function
• vertical asymptote: x = 0
• domain:

• range:

• x-intercept:

and key point

• y-intercept: none
• increasing if

1\\" title="b>1\\" class="latex mathjax">
• decreasing if 0 < b < 1
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1, and the second graph shows the line when 01."
width="824" height="367" data-media-type="image/

jpg">Figure 3

Figure 3 shows how changing the base b in

can affect the graphs. Observe that the graphs compress
vertically as the value of the base increases. (Note: recall
that the function

has base
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Figure 4. The graphs of three logarithmic functions with different
bases, all greater than 1.

How To: Given a logarithmic
function with the form

, graph the function.

1. Draw and label the vertical
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asymptote, x = 0.
2. Plot the x-intercept,

.
3. Plot the key point

.
4. Draw a smooth curve through the

points.
5. State the domain,

, the range,

, and the vertical asymptote, x = 0.

Example 3: Graphing a
Logarithmic Function with the
Form
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.

Graph

. State the domain, range, and asymptote.

Solution

Before graphing, identify the behavior and
key points for the graph.

• Since b = 5 is greater than one, we
know the function is increasing. The
left tail of the graph will approach the
vertical asymptote x = 0, and the right
tail will increase slowly without bound.

• The x-intercept is
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.
• The key point

is on the graph.
• We draw and label the asymptote,

plot and label the points, and draw a
smooth curve through the points.

Figure 5. The domain is

, the range is

, and the vertical asymptote is x = 0.
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Try It 3

Graph

. State the domain, range, and asymptote.

Solution
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188. Graphing
Transformations of
Logarithmic Functions

As we mentioned in the beginning of the section, transformations
of logarithmic graphs behave similarly to those of other parent
functions. We can shift, stretch, compress, and reflect the parent
function

without loss of shape.

Graphing a Horizontal Shift of

When a constant c is added to the input of the parent function

, the result is a horizontal shift c units in the opposite direction
of the sign on c. To visualize horizontal shifts, we can observe the
general graph of the parent function

and for c > 0 alongside the shift left,

, and the shift right,

.
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Figure 6

A General Note: Horizontal Shifts of
the Parent Function

For any constant c, the function

• shifts the parent function

left c units if c > 0.
• shifts the parent function
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right c units if c < 0.
• has the vertical asymptote x = –c.
• has domain

.
• has range

.

How To: Given a logarithmic function
with the form

, graph the translation.

1. Identify the horizontal shift:

1. If c > 0, shift the graph of

left c units.
2. If c < 0, shift the graph of

right c units.

2. Draw the vertical asymptote x = –c.
3. Identify three key points from the parent
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function. Find new coordinates for the shifted
functions by subtracting c from the x coordinate.

4. Label the three points.
5. The Domain is

, the range is

, and the vertical asymptote is x = –c.

Example 4: Graphing a Horizontal Shift
of the Parent Function

Sketch the horizontal shift

alongside its parent function. Include the key points and
asymptotes on the graph. State the domain, range, and
asymptote.
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Solution

Since the function is

, we notice

.

Thus c = –2, so c < 0. This means we will shift the
function

right 2 units.

The vertical asymptote is

or x = 2.

Consider the three key points from the parent
function,

,

, and

.

The new coordinates are found by adding 2 to the
x coordinates.

Label the points

,
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, and

.

The domain is

, the range is

, and the vertical asymptote is x = 2.

Figure 7
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Try It 4

Sketch a graph of

alongside its parent function. Include the key points and
asymptotes on the graph. State the domain, range, and
asymptote.

Solution

Graphing a Vertical Shift of

When a constant d is added to the parent function

, the result is a vertical shift d units in the direction of the sign
on d. To visualize vertical shifts, we can observe the general graph
of the parent function

alongside the shift up,

and the shift down,

.
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Figure 8

A General Note: Vertical Shifts of the
Parent Function

For any constant d, the function

• shifts the parent function
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up d units if d > 0.
• shifts the parent function

down d units if d < 0.
• has the vertical asymptote x = 0.
• has domain

.
• has range

.

How To: Given a logarithmic function
with the form

, graph the translation.

1. Identify the vertical shift:

1. If d > 0, shift the graph of

up d units.
2. If d < 0, shift the graph of
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down d units.

2. Draw the vertical asymptote x = 0.
3. Identify three key points from the parent

function. Find new coordinates for the shifted
functions by adding d to the y coordinate.

4. Label the three points.
5. The domain is

, the range is

, and the vertical asymptote is x = 0.

Example 5: Graphing a Vertical Shift of
the Parent Function

Sketch a graph of

alongside its parent function. Include the key points and
asymptote on the graph. State the domain, range, and
asymptote.

Graphing Transformations of Logarithmic Functions | 1377



Solution

Since the function is

, we will notice d = –2. Thus d < 0.

This means we will shift the function

down 2 units.

The vertical asymptote is x = 0.

Consider the three key points from the parent
function,

,

, and

.

The new coordinates are found by subtracting 2 from
the y coordinates.

Label the points

,

, and

.
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The domain is

, the range is

, and the vertical asymptote is x = 0.

Figure 9. The domain is

, the range is

, and the vertical asymptote is x = 0.
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Try It 5

Sketch a graph of

alongside its parent function. Include the key points and
asymptote on the graph. State the domain, range, and
asymptote.

Solution

Graphing Stretches and Compressions of

When the parent function

is multiplied by a constant a > 0, the result is a vertical stretch
or compression of the original graph. To visualize stretches and
compressions, we set a > 1 and observe the general graph of the
parent function

alongside the vertical stretch,

and the vertical compression,

.

1380 | Graphing Transformations of Logarithmic Functions



1 is the translation function with an asymptote at x=0. The graph
note the intersection of the two lines at (1, 0). This shows the

translation of a vertical stretch.” width=”900″ height=”700″ data-
media-type=”image/jpg”>Figure 10

A General Note: Vertical Stretches and
Compressions of the Parent Function

For any constant a > 1, the function

• stretches the parent function
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vertically by a factor of a if a > 1.
• compresses the parent function

vertically by a factor of a if 0 < a < 1.
• has the vertical asymptote x = 0.
• has the x-intercept

.
• has domain

.
• has range

.

How To: Given a logarithmic function
with the form

,

0\\" title="a>0\\" class="latex mathjax">,

1382 | Graphing Transformations of Logarithmic Functions



graph the translation.

1. Identify the vertical stretch or compressions:

1. If

1\\" title="|a|>1\\" class="latex mathjax">,
the graph of

is stretched by a factor of a units.
2. If

, the graph of

is compressed by a factor of a units.

2. Draw the vertical asymptote x = 0.
3. Identify three key points from the parent

function. Find new coordinates for the shifted
functions by multiplying the y coordinates by a.

4. Label the three points.
5. The domain is

, the range is

, and the vertical asymptote is x = 0.
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Example 6: Graphing a Stretch or
Compression of the Parent Function

Sketch a graph of

alongside its parent function. Include the key points and
asymptote on the graph. State the domain, range, and
asymptote.

Solution

Since the function is

, we will notice a = 2.

This means we will stretch the function

by a factor of 2.

The vertical asymptote is x = 0.

Consider the three key points from the parent
function,
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,

, and

.

The new coordinates are found by multiplying the
y coordinates by 2.

Label the points

,

, and

.

The domain is

, the range is
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, and the vertical asymptote is x = 0.

Figure 11. The domain is

, the range is

, and the vertical asymptote is x = 0.

Try It 6

Sketch a graph of

alongside its parent function. Include the key points and
asymptote on the graph. State the domain, range, and
asymptote.
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Solution

Example 7: Combining a Shift and a
Stretch

Sketch a graph of

. State the domain, range, and asymptote.

Solution

Remember: what happens inside parentheses happens
first. First, we move the graph left 2 units, then stretch
the function vertically by a factor of 5. The vertical
asymptote will be shifted to x = –2. The x-intercept will
be

. The domain will be

. Two points will help give the shape of the graph:
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and

. We chose x = 8 as the x-coordinate of one point to
graph because when x = 8, x + 2 = 10, the base of the
common logarithm.

Figure 12. The domain is

, the range is

, and the vertical asymptote is x = –2.
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Try It 7

Sketch a graph of the function

. State the domain, range, and asymptote.

Solution

Graphing Reflections of

When the parent function

is multiplied by –1, the result is a reflection about the x-axis. When
the input is multiplied by –1, the result is a reflection about the
y-axis. To visualize reflections, we restrict b > 1, and observe the
general graph of the parent function

alongside the reflection about the x-axis,

and the reflection about the y-axis,

.
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1 is the translation function with an asymptote at x=0. The graph
note the intersection of the two lines at (1, 0). This shows the

translation of a reflection about the x-axis.” width=”901″
height=”726″ data-media-type=”image/jpg”>Figure 13

A General Note: Reflections of the
Parent Function

The function
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• reflects the parent function

about the x-axis.
• has domain,

, range,

, and vertical asymptote, x = 0, which are
unchanged from the parent function.

The function

• reflects the parent function

about the y-axis.
• has domain

.
• has range,

, and vertical asymptote, x = 0, which are
unchanged from the parent function.

How To: Given a logarithmic function
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with the parent function

, graph a translation.

1. Draw the vertical asymptote, x = 0. 1. Draw the vertical asymptote,

2. Plot the x-intercept,

.

2. Plot the x-interc

.

3. Reflect the graph of the parent function

about the x-axis.

3. Reflect the graph o

about the y-axis.

4. Draw a smooth curve through the points. 4. Draw a smooth cur

5. State the domain, , the range,

, and the vertical asymptote x = 0.

5. State the domain,

, the range,

, and the vertical asymptote
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Example 8: Graphing a Reflection of a
Logarithmic Function

Sketch a graph of

alongside its parent function. Include the key points and
asymptote on the graph. State the domain, range, and
asymptote.

Solution

Before graphing

, identify the behavior and key points for the graph.

• Since b = 10 is greater than one, we know that
the parent function is increasing. Since the input
value is multiplied by –1, f is a reflection of the
parent graph about the y-axis. Thus,

will be decreasing as x moves from negative
infinity to zero, and the right tail of the graph will
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approach the vertical asymptote x = 0.
• The x-intercept is

.
• We draw and label the asymptote, plot and label

the points, and draw a smooth curve through the
points.

Figure 14. The domain is

, the range is

, and the vertical asymptote is x = 0.
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Try It 8

Graph

. State the domain, range, and asymptote.

Solution

How To: Given a logarithmic equation,
use a graphing calculator to approximate
solutions.

1. Press [Y=]. Enter the given logarithm equation
or equations as Y1= and, if needed, Y2=.

2. Press [GRAPH] to observe the graphs of the
curves and use [WINDOW] to find an appropriate
view of the graphs, including their point(s) of
intersection.

3. To find the value of x, we compute the point of
intersection. Press [2ND] then [CALC]. Select
“intersect” and press [ENTER] three times. The
point of intersection gives the value of x, for the
point(s) of intersection.
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Example 9: Approximating the Solution
of a Logarithmic Equation

Solve

graphically. Round to the nearest thousandth.

Solution

Press [Y=] and enter

next to Y1=. Then enter

next to Y2=. For a window, use the values 0 to 5 for x and
–10 to 10 for y. Press [GRAPH]. The graphs should
intersect somewhere a little to right of x = 1.

For a better approximation, press [2ND] then [CALC].
Select [5: intersect] and press [ENTER] three times. The
x-coordinate of the point of intersection is displayed as
1.3385297. (Your answer may be different if you use a
different window or use a different value for Guess?) So,
to the nearest thousandth,
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.

Try It 9

Solve

graphically. Round to the nearest thousandth.

Solution

Summarizing Translations of the Logarithmic
Function

Now that we have worked with each type of translation for the
logarithmic function, we can summarize each in the table below to
arrive at the general equation for translating exponential functions.
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Translations of the Parent Function

Translation

Shift

• Horizontally c units to the left
• Vertically d units up

Stretch and Compress

• Stretch if

1\\" title="|a|>1\\" class="latex mathjax">
• Compression if

Reflect about the x-axis

Reflect about the y-axis

General equation for all translations

A General Note: Translations of
Logarithmic Functions

All translations of the parent logarithmic function,

, have the form
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where the parent function,

1\\" title="y={\mathrm{log}}_{b}\left(x\right),b>1\\"
class="latex mathjax">, is

• shifted vertically up d units.
• shifted horizontally to the left c units.
• stretched vertically by a factor of |a| if |a| > 0.
• compressed vertically by a factor of |a| if 0 < |a| <

1.
• reflected about the x-axis when a < 0.

For

, the graph of the parent function is reflected about the
y-axis.

Example 10: Finding the Vertical
Asymptote of a Logarithm Graph

What is the vertical asymptote of

?
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Solution

The vertical asymptote is at x = –4.

Analysis of the Solution

The coefficient, the base, and the upward translation do not affect
the asymptote. The shift of the curve 4 units to the left shifts the
vertical asymptote to x = –4.

Try It 10

What is the vertical asymptote of

?

Solution
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Example 11: Finding the Equation from a
Graph

Find a possible equation for the common logarithmic
function graphed in Figure 15.

Figure 15
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Solution

This graph has a vertical asymptote at x = –2 and has
been vertically reflected. We do not know yet the
vertical shift or the vertical stretch. We know so far that
the equation will have form:

It appears the graph passes through the points

and

. Substituting

,

Next, substituting in

,

This gives us the equation

.
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Analysis of the Solution

We can verify this answer by comparing the function values in the
table below with the points on the graph in Example 11.

x −1 0 1 2 3

f(x) 1 0 −0.58496 −1 −1.3219

x 4 5 6 7 8

f(x) −1.5850 −1.8074 −2 −2.1699 −2.3219

Try It 11

Give the equation of the natural logarithm graphed in
Figure 16.
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Figure 16

Solution

Q & A

Is it possible to tell the domain and range and
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describe the end behavior of a function just by looking
at the graph?

Yes, if we know the function is a general logarithmic
function. For example, look at the graph in Try It 11. The
graph approaches x = –3 (or thereabouts) more and more
closely, so x = –3 is, or is very close to, the vertical
asymptote. It approaches from the right, so the domain is
all points to the right,

-3\right\}\\" title="\left\{x|x>-3\right\}\\"
class="latex mathjax">. The range, as with all general
logarithmic functions, is all real numbers. And we can see
the end behavior because the graph goes down as it goes
left and up as it goes right. The end behavior is that as

and as

.
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189. Key Concepts

Key Equations

General Form for the Translation of the Parent Logarithmic Function

Key Concepts

• To find the domain of a logarithmic function, set up an
inequality showing the argument greater than zero, and solve
for x.

• The graph of the parent function

has an x-intercept at

, domain

, range

, vertical asymptote x = 0, and

◦ if b > 1, the function is increasing.
◦ if 0 < b < 1, the function is decreasing.

• The equation

shifts the parent function

horizontally

◦ left c units if c > 0.
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◦ right c units if c < 0.
• The equation

shifts the parent function

vertically

◦ up d units if d > 0.
◦ down d units if d < 0.

• For any constant a > 0, the equation

◦ stretches the parent function

vertically by a factor of a if |a| > 1.
◦ compresses the parent function

vertically by a factor of a if |a| < 1.
• When the parent function

is multiplied by –1, the result is a reflection about the x-axis.
When the input is multiplied by –1, the result is a reflection
about the y-axis.

◦ The equation

represents a reflection of the parent function about the
x-axis.

◦ The equation

represents a reflection of the parent function about the
y-axis.

◦ A graphing calculator may be used to approximate
solutions to some logarithmic equations.

• All translations of the logarithmic function can be summarized
by the general equation
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.
• Given an equation with the general form

, we can identify the vertical asymptote x = –c for the
transformation.

• Using the general equation

, we can write the equation of a logarithmic function given its
graph.
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190. Section Exercises

1. The inverse of every logarithmic function is an exponential
function and vice-versa. What does this tell us about the
relationship between the coordinates of the points on the graphs of
each?

2. What type(s) of translation(s), if any, affect the range of a
logarithmic function?

3. What type(s) of translation(s), if any, affect the domain of a
logarithmic function?

4. Consider the general logarithmic function

. Why can’t x be zero?
5. Does the graph of a general logarithmic function have a

horizontal asymptote? Explain.
For the following exercises, state the domain and range of the

function.
6.

7.

8.

9.

10.

For the following exercises, state the domain and the vertical
asymptote of the function.

11.
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12.

13.

14.

15.

For the following exercises, state the domain, vertical asymptote,
and end behavior of the function.

16.

17.

18.

19.

20.

For the following exercises, state the domain, range, and x- and
y-intercepts, if they exist. If they do not exist, write DNE.

21.

22.

23.

24.

25.

For the following exercises, match each function in the graph
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below with the letter corresponding to its graph.

26.

27.

28.

29.

30.

For the following exercises, match each function in the figure
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below with the letter corresponding to its graph.

31.

32.

33.

For the following exercises, sketch the graphs of each pair of
functions on the same axis.

34.

and

35.
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and

36.

and

37.

and

For the following exercises, match each function in the graph
below with the letter corresponding to its graph.

38.

39.

40.
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For the following exercises, sketch the graph of the indicated
function.

41.

42.

43.

44.

45.

46.

For the following exercises, write a logarithmic equation
corresponding to the graph shown.

47. Use
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as the parent function.

48. Use
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as the parent function.

49. Use
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as the parent function.

50. Use
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as the parent function.

For the following exercises, use a graphing calculator to find
approximate solutions to each equation.

51.

52.

53.

54.

55.

56. Let b be any positive real number such that

. What must

be equal to? Verify the result.
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57. Explore and discuss the graphs of

and

. Make a conjecture based on the result.
58. Prove the conjecture made in the previous exercise.
59. What is the domain of the function

? Discuss the result.
60. Use properties of exponents to find the x-intercepts of the

function

algebraically. Show the steps for solving, and then verify the result
by graphing the function.
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PART XXVII

LOGARITHMIC
PROPERTIES
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191. Introduction to
Logarithmic Properties

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Use the product rule for logarithms.
• Use the quotient rule for logarithms.
• Use the power rule for logarithms.
• Expand logarithmic expressions.
• Condense logarithmic expressions.
• Use the change-of-base formula for logarithms.
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Figure 1. The pH of hydrochloric acid is tested
with litmus paper. (credit: David Berardan)

In chemistry, pH is used as a measure of the acidity or alkalinity of a
substance. The pH scale runs from 0 to 14. Substances with a pH less
than 7 are considered acidic, and substances with a pH greater than
7 are said to be alkaline. Our bodies, for instance, must maintain a
pH close to 7.35 in order for enzymes to work properly. To get a feel
for what is acidic and what is alkaline, consider the following pH
levels of some common substances:

• Battery acid: 0.8
• Stomach acid: 2.7
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• Orange juice: 3.3
• Pure water: 7 (at 25° C)
• Human blood: 7.35
• Fresh coconut: 7.8
• Sodium hydroxide (lye): 14

To determine whether a solution is acidic or alkaline, we find its pH,
which is a measure of the number of active positive hydrogen ions
in the solution. The pH is defined by the following formula, where
a is the concentration of hydrogen ion in the solution

The equivalence of

and

is one of the logarithm properties we will examine in this section.
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192. Use the product rule for
logarithms

Recall that the logarithmic and exponential functions “undo” each
other. This means that logarithms have similar properties to
exponents. Some important properties of logarithms are given here.
First, the following properties are easy to prove.

For example, since

. And

since

.
Next, we have the inverse property.

0\hfill \end{cases}\\" title="\begin{cases}\hfill \\
{\mathrm{log}}_{b}\left({b}^{x}\right)=x\hfill \\ \text{

}{b}^{{\mathrm{log}}_{b}x}=x,x>0\hfill \end{cases}\\" class="latex
mathjax">

For example, to evaluate

, we can rewrite the logarithm as

, and then apply the inverse property

to get
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.
To evaluate

, we can rewrite the logarithm as

, and then apply the inverse property

to get

.
Finally, we have the one-to-one property.

We can use the one-to-one property to solve the equation

for x. Since the bases are the same, we can apply the one-to-one
property by setting the arguments equal and solving for x:

But what about the equation

? The one-to-one property does not help us in this instance. Before
we can solve an equation like this, we need a method for combining
terms on the left side of the equation.

Recall that we use the product rule of exponents to combine the
product of exponents by adding:

. We have a similar property for logarithms, called the product
rule for logarithms, which says that the logarithm of a product
is equal to a sum of logarithms. Because logs are exponents, and
we multiply like bases, we can add the exponents. We will use the
inverse property to derive the product rule below.

Given any real number x and positive real numbers M, N, and
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b, where

, we will show

.

Let

and

. In exponential form, these equations are

and

. It follows that

Note that repeated applications of the product rule for logarithms
allow us to simplify the logarithm of the product of any number
of factors. For example, consider

. Using the product rule for logarithms, we can rewrite this
logarithm of a product as the sum of logarithms of its factors:

A General Note: The Product Rule for
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Logarithms

The product rule for logarithms can be used to
simplify a logarithm of a product by rewriting it as a
sum of individual logarithms.

0\\" title="{\mathrm{log}}_{b}\left(MN\
right)={\mathrm{log}}_{b}\left(M\

right)+{\mathrm{log}}_{b}\left(N\right)\text{ for
}b>0\\" class="latex mathjax">

How To: Given the logarithm of a
product, use the product rule of
logarithms to write an equivalent sum of
logarithms.

1. Factor the argument completely, expressing
each whole number factor as a product of primes.

2. Write the equivalent expression by summing the
logarithms of each factor.
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Example 1: Using the Product Rule for
Logarithms

Expand

.

Solution

We begin by factoring the argument completely,
expressing 30 as a product of primes.

Next we write the equivalent equation by summing
the logarithms of each factor.
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Try It 1

Expand

.

Solution

Use the product rule for logarithms | 1431



193. Use the quotient and
power rules for logarithms

For quotients, we have a similar rule for logarithms. Recall that
we use the quotient rule of exponents to combine the quotient of
exponents by subtracting:

. The quotient rule for logarithms says that the logarithm of a
quotient is equal to a difference of logarithms. Just as with the
product rule, we can use the inverse property to derive the quotient
rule.

Given any real number x and positive real numbers M, N, and
b, where

, we will show

.

Let

and

. In exponential form, these equations are

and

. It follows that

For example, to expand
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, we must first express the quotient in lowest terms. Factoring and
canceling we get,

Next we apply the quotient rule by subtracting the logarithm of the
denominator from the logarithm of the numerator. Then we apply
the product rule.

A General Note: The Quotient Rule for
Logarithms

The quotient rule for logarithms can be used to
simplify a logarithm or a quotient by rewriting it as the
difference of individual logarithms.

How To: Given the logarithm of a
quotient, use the quotient rule of
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logarithms to write an equivalent
difference of logarithms.

1. Express the argument in lowest terms by
factoring the numerator and denominator and
canceling common terms.

2. Write the equivalent expression by subtracting
the logarithm of the denominator from the
logarithm of the numerator.

3. Check to see that each term is fully expanded. If
not, apply the product rule for logarithms to
expand completely.

Example 2: Using the Quotient Rule for
Logarithms

Expand

.
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Solution

First we note that the quotient is factored and in
lowest terms, so we apply the quotient rule.

Notice that the resulting terms are logarithms of
products. To expand completely, we apply the product
rule, noting that the prime factors of the factor 15 are 3
and 5.

Analysis of the Solution

There are exceptions to consider in this and later examples. First,
because denominators must never be zero, this expression is not
defined for

and x = 2. Also, since the argument of a logarithm must be positive,
we note as we observe the expanded logarithm, that x > 0, x > 1,

-\frac{4}{3}\\" title="x>-\frac{4}{3}\\" class="latex mathjax">, and
x < 2. Combining these conditions is beyond the scope of this
section, and we will not consider them here or in subsequent
exercises.
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Try It 2

Expand

.

Solution

Using the Power Rule for Logarithms

We’ve explored the product rule and the quotient rule, but how
can we take the logarithm of a power, such as

? One method is as follows:

Notice that we used the product rule for logarithms to find a
solution for the example above. By doing so, we have derived the
power rule for logarithms, which says that the log of a power is
equal to the exponent times the log of the base. Keep in mind that,
although the input to a logarithm may not be written as a power, we
may be able to change it to a power. For example,
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A General Note: The Power Rule for
Logarithms

The power rule for logarithms can be used to simplify
the logarithm of a power by rewriting it as the product
of the exponent times the logarithm of the base.

How To: Given the logarithm of a
power, use the power rule of logarithms
to write an equivalent product of a factor
and a logarithm.

1. Express the argument as a power, if needed.
2. Write the equivalent expression by multiplying

the exponent times the logarithm of the base.
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Example 3: Expanding a Logarithm with
Powers

Expand

.

Solution

The argument is already written as a power, so we
identify the exponent, 5, and the base, x, and rewrite the
equivalent expression by multiplying the exponent times
the logarithm of the base.

Try It 3

Expand

1438 | Use the quotient and power rules for logarithms



.

Solution

Example 4: Rewriting an Expression as a
Power before Using the Power Rule

Expand

using the power rule for logs.

Solution

Expressing the argument as a power, we get

.

Next we identify the exponent, 2, and the base, 5, and
rewrite the equivalent expression by multiplying the
exponent times the logarithm of the base.
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Try It 4

Expand

.

Solution

Example 5: Using the Power Rule in
Reverse

Rewrite

using the power rule for logs to a single logarithm with a
leading coefficient of 1.
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Solution

Because the logarithm of a power is the product of the
exponent times the logarithm of the base, it follows that
the product of a number and a logarithm can be written
as a power. For the expression

, we identify the factor, 4, as the exponent and the
argument, x, as the base, and rewrite the product as a
logarithm of a power:

.

Try It 5

Rewrite

using the power rule for logs to a single logarithm with a
leading coefficient of 1.

Solution

Use the quotient and power rules for logarithms | 1441



194. Expand logarithmic
expressions

Taken together, the product rule, quotient rule, and power rule are
often called “laws of logs.” Sometimes we apply more than one rule
in order to simplify an expression. For example:

We can use the power rule to expand logarithmic expressions
involving negative and fractional exponents. Here is an alternate
proof of the quotient rule for logarithms using the fact that a
reciprocal is a negative power:

We can also apply the product rule to express a sum or difference of
logarithms as the logarithm of a product.

With practice, we can look at a logarithmic expression and expand
it mentally, writing the final answer. Remember, however, that we
can only do this with products, quotients, powers, and roots—never
with addition or subtraction inside the argument of the logarithm.
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Example 6: Expanding Logarithms Using
Product, Quotient, and Power Rules

Rewrite

as a sum or difference of logs.

Solution

First, because we have a quotient of two expressions,
we can use the quotient rule:

Then seeing the product in the first term, we use the
product rule:

Finally, we use the power rule on the first term:
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Try It 6

Expand

.

Solution

Example 7: Using the Power Rule for
Logarithms to Simplify the Logarithm of
a Radical Expression

Expand

.
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Solution

Try It 7

Expand

.

Solution

Q & A

Can we expand

?

Expand logarithmic expressions | 1445



No. There is no way to expand the logarithm of a sum
or difference inside the argument of the logarithm.

Example 8: Expanding Complex
Logarithmic Expressions

Expand

.

Solution

We can expand by applying the Product and Quotient
Rules.
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Try It 8

Expand

.

Solution

Expand logarithmic expressions | 1447



195. Condense logarithmic
expressions

We can use the rules of logarithms we just learned to condense
sums, differences, and products with the same base as a single
logarithm. It is important to remember that the logarithms must
have the same base to be combined. We will learn later how to
change the base of any logarithm before condensing.

How To: Given a sum, difference, or
product of logarithms with the same base,
write an equivalent expression as a single
logarithm.

1. Apply the power property first. Identify terms
that are products of factors and a logarithm, and
rewrite each as the logarithm of a power.

2. Next apply the product property. Rewrite sums
of logarithms as the logarithm of a product.

3. Apply the quotient property last. Rewrite
differences of logarithms as the logarithm of a
quotient.
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Example 9: Using the Product and
Quotient Rules to Combine Logarithms

Write

as a single logarithm.

Solution

Using the product and quotient rules

This reduces our original expression to

Then, using the quotient rule
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Try It 9

Condense

.

Solution

Example 10: Condensing Complex
Logarithmic Expressions

Condense

.

Solution

We apply the power rule first:
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Next we apply the product rule to the sum:

Finally, we apply the quotient rule to the difference:

Example 11: Rewriting as a Single
Logarithm

Rewrite

as a single logarithm.

Solution

We apply the power rule first:

Next we apply the product rule to the sum:
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Finally, we apply the quotient rule to the difference:

Try It 10

Rewrite

as a single logarithm.

Solution

Try It 11

Condense

.

Solution

1452 | Condense logarithmic expressions



Example 12: Applying of the Laws of
Logs

Recall that, in chemistry,

. If the concentration of hydrogen ions in a liquid is
doubled, what is the effect on pH?

Solution

Suppose C is the original concentration of hydrogen
ions, and P is the original pH of the liquid. Then

. If the concentration is doubled, the new concentration
is 2C. Then the pH of the new liquid is

Using the product rule of logs

Since

, the new pH is
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When the concentration of hydrogen ions is doubled,
the pH decreases by about 0.301.

Try It 12

How does the pH change when the concentration of
positive hydrogen ions is decreased by half?

Solution
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196. Use the change-of-base
formula for logarithms

Most calculators can evaluate only common and natural logs. In
order to evaluate logarithms with a base other than 10 or , we
use the change-of-base formula to rewrite the logarithm as the
quotient of logarithms of any other base; when using a calculator,
we would change them to common or natural logs.

To derive the change-of-base formula, we use the one-to-one
property and power rule for logarithms.

Given any positive real numbers M, b, and n, where

and

, we show

Let

. By taking the log base of both sides of the equation, we arrive
at an exponential form, namely

. It follows that

For example, to evaluate

using a calculator, we must first rewrite the expression as a quotient
of common or natural logs. We will use the common log.
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A General Note: The Change-of-Base
Formula

The change-of-base formula can be used to evaluate
a logarithm with any base.

For any positive real numbers M, b, and n, where

and

,

.
It follows that the change-of-base formula can be

used to rewrite a logarithm with any base as the
quotient of common or natural logs.

and
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How To: Given a logarithm with the
form

, use the change-of-base formula to
rewrite it as a quotient of logs with any
positive base

, where

.

1. Determine the new base n, remembering that
the common log,

, has base 10, and the natural log,

, has base e.
2. Rewrite the log as a quotient using the change-

of-base formula

◦ The numerator of the quotient will be a
logarithm with base n and argument M.

◦ The denominator of the quotient will be a
logarithm with base n and argument b.
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Example 13: Changing Logarithmic
Expressions to Expressions Involving
Only Natural Logs

Change

to a quotient of natural logarithms.

Solution

Because we will be expressing

as a quotient of natural logarithms, the new base, n = e.

We rewrite the log as a quotient using the change-of-
base formula. The numerator of the quotient will be the
natural log with argument 3. The denominator of the
quotient will be the natural log with argument 5.
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Try It 13

Change

to a quotient of natural logarithms.

Solution

Q & A

Can we change common logarithms to natural
logarithms?

Yes. Remember that

means

. So,

.
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Example 14: Using the Change-of-Base
Formula with a Calculator

Evaluate

using the change-of-base formula with a calculator.

Solution

According to the change-of-base formula, we can
rewrite the log base 2 as a logarithm of any other base.
Since our calculators can evaluate the natural log, we
might choose to use the natural logarithm, which is the
log base e.
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Try It 14

Evaluate

using the change-of-base formula.

Solution

Use the change-of-base formula for logarithms | 1461



197. Key Terms & Glossary

Key Equations

The Product
Rule for
Logarithms

The Quotient
Rule for
Logarithms

The Power Rule
for Logarithms

The
Change-of-Base
Formula

Key Concepts

• We can use the product rule of logarithms to rewrite the log of
a product as a sum of logarithms.

• We can use the quotient rule of logarithms to rewrite the log
of a quotient as a difference of logarithms.

• We can use the power rule for logarithms to rewrite the log of
a power as the product of the exponent and the log of its base.

• We can use the product rule, the quotient rule, and the power
rule together to combine or expand a logarithm with a
complex input.

• The rules of logarithms can also be used to condense sums,
differences, and products with the same base as a single
logarithm.

• We can convert a logarithm with any base to a quotient of
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logarithms with any other base using the change-of-base
formula.

• The change-of-base formula is often used to rewrite a
logarithm with a base other than 10 and e as the quotient of
natural or common logs. That way a calculator can be used to
evaluate.

Glossary

change-of-base formula
a formula for converting a logarithm with any base to a
quotient of logarithms with any other base.

power rule for logarithms
a rule of logarithms that states that the log of a power is equal
to the product of the exponent and the log of its base

product rule for logarithms
a rule of logarithms that states that the log of a product is
equal to a sum of logarithms

quotient rule for logarithms
a rule of logarithms that states that the log of a quotient is
equal to a difference of logarithms
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198. Section Exercises

1. How does the power rule for logarithms help when solving
logarithms with the form

?
2. What does the change-of-base formula do? Why is it useful

when using a calculator?
For the following exercises, expand each logarithm as much as

possible. Rewrite each expression as a sum, difference, or product
of logs.

3.

4.

5.

6.

7.

8.

For the following exercises, condense to a single logarithm if
possible.

9.

10.

11.
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12.

13.

14.

For the following exercises, use the properties of logarithms to
expand each logarithm as much as possible. Rewrite each
expression as a sum, difference, or product of logs.

15.

16.

17.

18.

19.

For the following exercises, condense each expression to a single
logarithm using the properties of logarithms.

20.

21.

22.

23.

24.
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For the following exercises, rewrite each expression as an
equivalent ratio of logs using the indicated base.

25.

to base e
26.

to base 10
For the following exercises, suppose

and

. Use the change-of-base formula along with properties of
logarithms to rewrite each expression in terms of a and b. Show the
steps for solving.

27.

28.

29.

For the following exercises, use properties of logarithms to
evaluate without using a calculator.

30.

31.

32.

For the following exercises, use the change-of-base formula to
evaluate each expression as a quotient of natural logs. Use a
calculator to approximate each to five decimal places.
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33.

34.

35.

36.

37.

38. Use the product rule for logarithms to find all x values such
that

. Show the steps for solving.
39. Use the quotient rule for logarithms to find all x values such

that

. Show the steps for solving.
40. Can the power property of logarithms be derived from the

power property of exponents using the equation

If not, explain why. If so, show the derivation.
41. Prove that

for any positive integers b > 1 and n > 1.
42. Does

? Verify the claim algebraically.
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199. Introduction to
Exponential and Logarithmic
Equations

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Use like bases to solve exponential equations.
• Use logarithms to solve exponential equations.
• Use the definition of a logarithm to solve

logarithmic equations.
• Use the one-to-one property of logarithms to solve

logarithmic equations.
• Solve applied problems involving exponential and

logarithmic equations.
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Figure 1. Wild rabbits in Australia. The rabbit population grew so quickly in
Australia that the event became known as the “rabbit plague.” (credit: Richard
Taylor, Flickr)

In 1859, an Australian landowner named Thomas Austin released
24 rabbits into the wild for hunting. Because Australia had few
predators and ample food, the rabbit population exploded. In fewer
than ten years, the rabbit population numbered in the millions.

Uncontrolled population growth, as in the wild rabbits in
Australia, can be modeled with exponential functions. Equations
resulting from those exponential functions can be solved to analyze
and make predictions about exponential growth. In this section, we
will learn techniques for solving exponential functions.
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200. Use like bases to solve
exponential equations

The first technique involves two functions with like bases. Recall
that the one-to-one property of exponential functions tells us that,
for any real numbers b, S, and T, where

0,\text{ }b\ne 1\\" title="b>0,\text{ }b\ne 1\\" class="latex
mathjax">,

if and only if S = T.
In other words, when an exponential equation has the same base

on each side, the exponents must be equal. This also applies when
the exponents are algebraic expressions. Therefore, we can solve
many exponential equations by using the rules of exponents to
rewrite each side as a power with the same base. Then, we use the
fact that exponential functions are one-to-one to set the exponents
equal to one another, and solve for the unknown.

For example, consider the equation

. To solve for x, we use the division property of exponents to rewrite
the right side so that both sides have the common base, 3. Then
we apply the one-to-one property of exponents by setting the
exponents equal to one another and solving for x:
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A General Note: Using the One-to-One
Property of Exponential Functions to
Solve Exponential Equations

For any algebraic expressions S and T, and any
positive real number

,

How To: Given an exponential equation
with the form

, where S and T are algebraic expressions
with an unknown, solve for the unknown.

1. Use the rules of exponents to simplify, if
necessary, so that the resulting equation has the
form

.
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2. Use the one-to-one property to set the
exponents equal.

3. Solve the resulting equation, S = T, for the
unknown.

Example 1: Solving an Exponential
Equation with a Common Base

Solve

.

Solution
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Try It 1

Solve

.

Solution

Rewriting Equations So All Powers Have the
Same Base

Sometimes the common base for an exponential equation is not
explicitly shown. In these cases, we simply rewrite the terms in the
equation as powers with a common base, and solve using the one-
to-one property.

For example, consider the equation

. We can rewrite both sides of this equation as a power of 2. Then we
apply the rules of exponents, along with the one-to-one property,
to solve for x:
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How To: Given an exponential equation
with unlike bases, use the one-to-one
property to solve it.

1. Rewrite each side in the equation as a power
with a common base.

2. Use the rules of exponents to simplify, if
necessary, so that the resulting equation has the
form

.
3. Use the one-to-one property to set the

exponents equal.
4. Solve the resulting equation, S = T, for the

unknown.

Example 2: Solving Equations by
Rewriting Them to Have a Common Base

Solve

.
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Solution

Try It 2

Solve

.

Solution

Example 3: Solving Equations by
Rewriting Roots with Fractional
Exponents to Have a Common Base

Solve
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.

Solution

Try It 3

Solve

.

Solution
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Q & A

Do all exponential equations have a solution? If not,
how can we tell if there is a solution during the
problem-solving process?

No. Recall that the range of an exponential function is
always positive. While solving the equation, we may
obtain an expression that is undefined.

Example 4: Solving an Equation with
Positive and Negative Powers

Solve

.
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Solution

This equation has no solution. There is no real value of
x that will make the equation a true statement because
any power of a positive number is positive.

Analysis of the Solution

The figure below shows that the two graphs do not cross so the
left side is never equal to the right side. Thus the equation has no
solution.
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Figure 1

Try It 4

Solve

.

Solution
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201. Use logarithms to solve
exponential equations

Sometimes the terms of an exponential equation cannot be
rewritten with a common base. In these cases, we solve by taking
the logarithm of each side. Recall, since

is equivalent to a = b, we may apply logarithms with the same base
on both sides of an exponential equation.

How To: Given an exponential equation
in which a common base cannot be found,
solve for the unknown.

1. Apply the logarithm of both sides of the
equation.

◦ If one of the terms in the equation has
base 10, use the common logarithm.

◦ If none of the terms in the equation has
base 10, use the natural logarithm.

2. Use the rules of logarithms to solve for the
unknown.

Use logarithms to solve exponential
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Example 5: Solving an Equation
Containing Powers of Different Bases

Solve

.

Solution

Try It 5

Solve
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.

Solution

Q & A

Is there any way to solve

?

Yes. The solution is x = 0.

Equations Containing

One common type of exponential equations are those with base e.
This constant occurs again and again in nature, in mathematics, in
science, in engineering, and in finance. When we have an equation
with a base e on either side, we can use the natural logarithm to
solve it.
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How To: Given an equation of the form

, solve for t.

1. Divide both sides of the equation by A.
2. Apply the natural logarithm of both sides of the

equation.
3. Divide both sides of the equation by k.

Example 6: Solve an Equation of the
Form

Solve

.
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Solution

Analysis of the Solution

Using laws of logs, we can also write this answer in the form

. If we want a decimal approximation of the answer, we use a
calculator.

Try It 6

Solve

.

Solution
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Q & A

Does every equation of the form

have a solution?

No. There is a solution when

, and when y and A are either both 0 or neither 0, and
they have the same sign. An example of an equation with
this form that has no solution is

.

Example 7: Solving an Equation That
Can Be Simplified to the Form

Solve

.
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Solution

Try It 7

Solve

.

Solution

Extraneous Solutions

Sometimes the methods used to solve an equation introduce an
extraneous solution, which is a solution that is correct algebraically
but does not satisfy the conditions of the original equation. One
such situation arises in solving when the logarithm is taken on both
sides of the equation. In such cases, remember that the argument of
the logarithm must be positive. If the number we are evaluating in a
logarithm function is negative, there is no output.
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Example 8: Solving Exponential
Functions in Quadratic Form

Solve

.

Solution

Analysis of the Solution

When we plan to use factoring to solve a problem, we always get
zero on one side of the equation, because zero has the unique
property that when a product is zero, one or both of the factors
must be zero. We reject the equation
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because a positive number never equals a negative number. The
solution

is not a real number, and in the real number system this solution is
rejected as an extraneous solution.

Try It 8

Solve

.

Solution

Q & A

Does every logarithmic equation have a solution?

No. Keep in mind that we can only apply the logarithm
to a positive number. Always check for extraneous
solutions.
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202. Use the definition of a
logarithm to solve logarithmic
equations

We have already seen that every logarithmic equation

is equivalent to the exponential equation

. We can use this fact, along with the rules of logarithms, to solve
logarithmic equations where the argument is an algebraic
expression.

For example, consider the equation

. To solve this equation, we can use rules of logarithms to rewrite
the left side in compact form and then apply the definition of logs
to solve for x:
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A General Note: Using the Definition of
a Logarithm to Solve Logarithmic
Equations

For any algebraic expression S and real numbers b and
c, where

0,\text{ }b\ne 1\\" title="b>0,\text{ }b\ne 1\\"
class="latex mathjax">,

Example 9: Using Algebra to Solve a
Logarithmic Equation

Solve

.
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Solution

Try It 9

Solve

.

Solution

Example 10: Using Algebra Before and
After Using the Definition of the Natural
Logarithm

Solve
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.

Solution

Try It 10

Solve

.

Solution
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Example 11: Using a Graph to
Understand the Solution to a Logarithmic
Equation

Solve

.

Solution

Figure 2 represents the graph of the equation. On the
graph, the x-coordinate of the point at which the two
graphs intersect is close to 20. In other words

. A calculator gives a better approximation:

.
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Figure 2. The graphs of

and y = 3 cross at the point

, which is approximately (20.0855, 3).

Try It 11

Use a graphing calculator to estimate the approximate
solution to the logarithmic equation

to 2 decimal places.

Solution
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203. Use the one-to-one
property of logarithms to
solve logarithmic equations

As with exponential equations, we can use the one-to-one property
to solve logarithmic equations. The one-to-one property of
logarithmic functions tells us that, for any real numbers x > 0, S >
0, T > 0 and any positive real number b, where

,

.

For example,

.

So, if

, then we can solve for x, and we get x = 9. To check, we can
substitute x = 9 into the original equation:

. In other words, when a logarithmic equation has the same base
on each side, the arguments must be equal. This also applies when
the arguments are algebraic expressions. Therefore, when given an
equation with logs of the same base on each side, we can use rules
of logarithms to rewrite each side as a single logarithm. Then we
use the fact that logarithmic functions are one-to-one to set the
arguments equal to one another and solve for the unknown.

For example, consider the equation

1498 | Use the one-to-one property
of logarithms to solve logarithmic



. To solve this equation, we can use the rules of logarithms to
rewrite the left side as a single logarithm, and then apply the one-
to-one property to solve for x:

To check the result, substitute x = 10 into

.

A General Note: Using the One-to-One
Property of Logarithms to Solve
Logarithmic Equations

For any algebraic expressions S and T and any positive
real number b, where

,

Note, when solving an equation involving logarithms,
always check to see if the answer is correct or if it is an
extraneous solution.
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How To: Given an equation containing
logarithms, solve it using the one-to-one
property.

1. Use the rules of logarithms to combine like
terms, if necessary, so that the resulting equation
has the form

.
2. Use the one-to-one property to set the

arguments equal.
3. Solve the resulting equation, S = T, for the

unknown.

Example 12: Solving an Equation Using
the One-to-One Property of Logarithms

Solve

.
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Solution

Analysis of the Solution

There are two solutions: x = 3 or x = –1. The solution x = –1 is
negative, but it checks when substituted into the original equation
because the argument of the logarithm functions is still positive.

Try It 12

Solve

.

Solution
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204. Solve applied problems
involving exponential and
logarithmic equations

In previous sections, we learned the properties and rules for both
exponential and logarithmic functions. We have seen that any
exponential function can be written as a logarithmic function and
vice versa. We have used exponents to solve logarithmic equations
and logarithms to solve exponential equations. We are now ready
to combine our skills to solve equations that model real-world
situations, whether the unknown is in an exponent or in the
argument of a logarithm.

One such application is in science, in calculating the time it takes
for half of the unstable material in a sample of a radioactive
substance to decay, called its half-life. The table below lists the half-
life for several of the more common radioactive substances.

Substance Use Half-life

gallium-67 nuclear medicine 80 hours

cobalt-60 manufacturing 5.3 years

technetium-99m nuclear medicine 6 hours

americium-241 construction 432 years

carbon-14 archeological dating 5,715 years

uranium-235 atomic power 703,800,000 years

We can see how widely the half-lives for these substances vary.
Knowing the half-life of a substance allows us to calculate the
amount remaining after a specified time. We can use the formula for
radioactive decay:
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where

•
is the amount initially present

• T is the half-life of the substance
• t is the time period over which the substance is studied
• y is the amount of the substance present after time t

Example 13: Using the Formula for
Radioactive Decay to Find the Quantity
of a Substance

How long will it take for ten percent of a 1000-gram
sample of uranium-235 to decay?
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Solution

Analysis of the Solution

Ten percent of 1000 grams is 100 grams. If 100 grams decay, the
amount of uranium-235 remaining is 900 grams.

Try It 13

How long will it take before twenty percent of our
1000-gram sample of uranium-235 has decayed?

Solution
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205. Key Concepts & Glossary

Key Equations

One-to-one
property
for
exponential
functions

For any algebraic expressions S and T and any positive real number b,
where

if and only if S = T.

Definition
of a
logarithm

For any algebraic expression S and positive real numbers b and c, where

,

if and only if

.

One-to-one
property
for
logarithmic
functions

For any algebraic expressions S and T and any positive real number b,
where

,

if and only if S = T.

Key Concepts

• We can solve many exponential equations by using the rules of
exponents to rewrite each side as a power with the same base.
Then we use the fact that exponential functions are one-to-
one to set the exponents equal to one another and solve for
the unknown.

• When we are given an exponential equation where the bases
are explicitly shown as being equal, set the exponents equal to
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one another and solve for the unknown.
• When we are given an exponential equation where the bases

are not explicitly shown as being equal, rewrite each side of the
equation as powers of the same base, then set the exponents
equal to one another and solve for the unknown.

• When an exponential equation cannot be rewritten with a
common base, solve by taking the logarithm of each side.

• We can solve exponential equations with base e, by applying
the natural logarithm of both sides because exponential and
logarithmic functions are inverses of each other.

• After solving an exponential equation, check each solution in
the original equation to find and eliminate any extraneous
solutions.

• When given an equation of the form

, where S is an algebraic expression, we can use the definition
of a logarithm to rewrite the equation as the equivalent
exponential equation

, and solve for the unknown.
• We can also use graphing to solve equations with the form

. We graph both equations

and y = c on the same coordinate plane and identify the
solution as the x-value of the intersecting point.

• When given an equation of the form

, where S and T are algebraic expressions, we can use the one-
to-one property of logarithms to solve the equation S = T for
the unknown.

• Combining the skills learned in this and previous sections, we
can solve equations that model real world situations, whether
the unknown is in an exponent or in the argument of a
logarithm.
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Glossary

extraneous solution
a solution introduced while solving an equation that does not
satisfy the conditions of the original equation
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206. Section Exercises

1. How can an exponential equation be solved?
2. When does an extraneous solution occur? How can an

extraneous solution be recognized?
3. When can the one-to-one property of logarithms be used to

solve an equation? When can it not be used?
For the following exercises, use like bases to solve the exponential

equation.
4.

5.

6.

7.

8.

9.

10.

For the following exercises, use logarithms to solve.
11.

12.

13.
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

For the following exercises, use the definition of a logarithm to
rewrite the equation as an exponential equation.
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29.

30.

For the following exercises, use the definition of a logarithm to
solve the equation.

31.

32.

33.

34.

35.

For the following exercises, use the one-to-one property of
logarithms to solve.

36.

37.

38.

39.

40.

41.

42.
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43.

For the following exercises, solve each equation for x.
44.

45.

46.

47.

48.

49.

50.

For the following exercises, solve the equation for x, if there is
a solution. Then graph both sides of the equation, and observe the
point of intersection (if it exists) to verify the solution.

51.

52.

53.

54.

55.

56.

57.
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58.

59.

60.

61.

62.

63.

64.

For the following exercises, solve for the indicated value, and
graph the situation showing the solution point.

65. An account with an initial deposit of $6,500 earns 7.25%
annual interest, compounded continuously. How much will the
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account be worth after 20 years?

66. The formula for measuring sound intensity in decibels D is
defined by the equation

, where I is the intensity of the sound in watts per square meter and

is the lowest level of sound that the average person can hear. How
many decibels are emitted from a jet plane with a sound intensity of

watts per square meter?
67. The population of a small town is modeled by the equation

where t is measured in years. In approximately how many years will
the town’s population reach 20,000?

For the following exercises, solve each equation by rewriting the
exponential expression using the indicated logarithm. Then use a
calculator to approximate x to 3 decimal places.

68.

using the common log.
69.
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using the natural log
70.

using the common log
71.

using the common log
72.

using the natural log
For the following exercises, use a calculator to solve the equation.

Unless indicated otherwise, round all answers to the nearest ten-
thousandth.

73.

74.

75.

76. Atmospheric pressure P in pounds per square inch is
represented by the formula

, where x is the number of miles above sea level. To the nearest foot,
how high is the peak of a mountain with an atmospheric pressure of
8.369 pounds per square inch? (Hint: there are 5280 feet in a mile)

77. The magnitude M of an earthquake is represented by the
equation

where E is the amount of energy released by the earthquake in
joules and

is the assigned minimal measure released by an earthquake. To the
nearest hundredth, what would the magnitude be of an earthquake
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releasing

joules of energy?
78. Use the definition of a logarithm along with the one-to-one

property of logarithms to prove that

.
79. Recall the formula for continually compounding interest,

. Use the definition of a logarithm along with properties of
logarithms to solve the formula for time t such that t is equal to a
single logarithm.

80. Recall the compound interest formula

. Use the definition of a logarithm along with properties of
logarithms to solve the formula for time t.

81. Newton’s Law of Cooling states that the temperature T of an
object at any time t can be described by the equation

, where

is the temperature of the surrounding environment,

is the initial temperature of the object, and k is the cooling rate. Use
the definition of a logarithm along with properties of logarithms to
solve the formula for time t such that t is equal to a single logarithm.
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207. Introduction to
Exponential and Logarithmic
Models

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

• Model exponential growth and decay.
• Use Newton’s Law of Cooling.
• Use logistic-growth models.
• Choose an appropriate model for data.
• Express an exponential model in base e.
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Figure 1. A nuclear research reactor inside the Neely Nuclear
Research Center on the Georgia Institute of Technology campus
(credit: Georgia Tech Research Institute)

We have already explored some basic applications of exponential
and logarithmic functions. In this section, we explore some
important applications in more depth, including radioactive
isotopes and Newton’s Law of Cooling.
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208. Model exponential
growth and decay

In real-world applications, we need to model the behavior of a
function. In mathematical modeling, we choose a familiar general
function with properties that suggest that it will model the real-
world phenomenon we wish to analyze. In the case of rapid growth,
we may choose the exponential growth function:

where

is equal to the value at time zero, e is Euler’s constant, and k is a
positive constant that determines the rate (percentage) of growth.
We may use the exponential growth function in applications
involving doubling time, the time it takes for a quantity to double.
Such phenomena as wildlife populations, financial investments,
biological samples, and natural resources may exhibit growth based
on a doubling time. In some applications, however, as we will see
when we discuss the logistic equation, the logistic model sometimes
fits the data better than the exponential model.

On the other hand, if a quantity is falling rapidly toward zero,
without ever reaching zero, then we should probably choose the
exponential decay model. Again, we have the form

where

is the starting value, and e is Euler’s constant. Now k is a negative
constant that determines the rate of decay. We may use the
exponential decay model when we are calculating half-life, or the
time it takes for a substance to exponentially decay to half of its
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original quantity. We use half-life in applications involving
radioactive isotopes.

In our choice of a function to serve as a mathematical model,
we often use data points gathered by careful observation and
measurement to construct points on a graph and hope we can
recognize the shape of the graph. Exponential growth and decay
graphs have a distinctive shape, as we can see in Figure 2 and Figure
3. It is important to remember that, although parts of each of the
two graphs seem to lie on the x-axis, they are really a tiny distance
above the x-axis.

Figure 2. A graph showing exponential growth. The equation is

.
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Figure 3. A graph showing exponential decay. The equation is

.

Exponential growth and decay often involve very large or very small
numbers. To describe these numbers, we often use orders of
magnitude. The order of magnitude is the power of ten, when the
number is expressed in scientific notation, with one digit to the
left of the decimal. For example, the distance to the nearest star,
Proxima Centauri, measured in kilometers, is 40,113,497,200,000
kilometers. Expressed in scientific notation, this is

. So, we could describe this number as having order of magnitude

.
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A General Note: Characteristics of the
Exponential Function,

An exponential function with the form

has the following characteristics:

• one-to-one function
• horizontal asymptote: y = 0
• domain:

• range:

• x intercept: none
• y-intercept:

• increasing if k > 0
• decreasing if k < 0

0 and with the labeled points (1/k, (A_0)e), (0, A_0),
and (-1/k, (A_0)/e). The second graph is of when k<0
and with the labeled points (-1/k, (A_0)e), (0, A_0), and
(1/k, (A_0)/e).">
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0 and with the labeled points (1/k, (A_0)e), (0, A_0), and
(-1/k, (A_0)/e). The second graph is of when k<0 and
with the labeled points (-1/k, (A_0)e), (0, A_0), and (1/k,
(A_0)/e)." data-media-type="image/jpg">

0 and with the labeled points (1/k, (A_0)e), (0, A_0),
and (-1/k, (A_0)/e). The second graph is of when k<0
and with the labeled points (-1/k, (A_0)e), (0, A_0), and
(1/k, (A_0)/e).">Figure 4. An exponential function
models exponential growth when k > 0 and exponential
decay when k < 0.

Example 1: Graphing Exponential
Growth

A population of bacteria doubles every hour. If the
culture started with 10 bacteria, graph the population as
a function of time.
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Solution

When an amount grows at a fixed percent per unit
time, the growth is exponential. To find

we use the fact that

is the amount at time zero, so

. To find k, use the fact that after one hour

the population doubles from 10 to 20. The formula is
derived as follows

so

. Thus the equation we want to graph is

. The graph is shown in Figure 5.
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Figure 5. The graph of

Analysis of the Solution

The population of bacteria after ten hours is 10,240. We could
describe this amount is being of the order of magnitude

. The population of bacteria after twenty hours is 10,485,760 which
is of the order of magnitude
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, so we could say that the population has increased by three orders
of magnitude in ten hours.

Half-Life

We now turn to exponential decay. One of the common terms
associated with exponential decay, as stated above, is half-life, the
length of time it takes an exponentially decaying quantity to
decrease to half its original amount. Every radioactive isotope has
a half-life, and the process describing the exponential decay of an
isotope is called radioactive decay.

To find the half-life of a function describing exponential decay,
solve the following equation:

We find that the half-life depends only on the constant k and not
on the starting quantity

.
The formula is derived as follows

Since t, the time, is positive, k must, as expected, be negative. This
gives us the half-life formula
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How To: Given the half-life, find the
decay rate.

1. Write

.
2. Replace A by

and replace t by the given half-life.
3. Solve to find k. Express k as an exact value (do

not round).

Note: It is also possible to find the decay rate using

.

Example 2: Finding the Function that
Describes Radioactive Decay

The half-life of carbon-14 is 5,730 years. Express the
amount of carbon-14 remaining as a function of time, t.

Model exponential growth and decay | 1529



Solution

This formula is derived as follows.

The function that describes this continuous decay is

. We observe that the coefficient of t,

is negative, as expected in the case of exponential decay.

Try It 1

The half-life of plutonium-244 is 80,000,000 years. Find
function gives the amount of carbon-14 remaining as a
function of time, measured in years.

Solution
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Radiocarbon Dating

The formula for radioactive decay is important in radiocarbon
dating, which is used to calculate the approximate date a plant or
animal died. Radiocarbon dating was discovered in 1949 by Willard
Libby, who won a Nobel Prize for his discovery. It compares the
difference between the ratio of two isotopes of carbon in an organic
artifact or fossil to the ratio of those two isotopes in the air. It
is believed to be accurate to within about 1% error for plants or
animals that died within the last 60,000 years.

Carbon-14 is a radioactive isotope of carbon that has a half-life
of 5,730 years. It occurs in small quantities in the carbon dioxide in
the air we breathe. Most of the carbon on Earth is carbon-12, which
has an atomic weight of 12 and is not radioactive. Scientists have
determined the ratio of carbon-14 to carbon-12 in the air for the last
60,000 years, using tree rings and other organic samples of known
dates—although the ratio has changed slightly over the centuries.

As long as a plant or animal is alive, the ratio of the two isotopes
of carbon in its body is close to the ratio in the atmosphere. When
it dies, the carbon-14 in its body decays and is not replaced. By
comparing the ratio of carbon-14 to carbon-12 in a decaying sample
to the known ratio in the atmosphere, the date the plant or animal
died can be approximated.

Since the half-life of carbon-14 is 5,730 years, the formula for the
amount of carbon-14 remaining after t years is

where

• A is the amount of carbon-14 remaining
•

is the amount of carbon-14 when the plant or animal began
decaying.
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This formula is derived as follows:

To find the age of an object, we solve this equation for t:

Out of necessity, we neglect here the many details that a scientist
takes into consideration when doing carbon-14 dating, and we only
look at the basic formula. The ratio of carbon-14 to carbon-12 in
the atmosphere is approximately 0.0000000001%. Let r be the ratio
of carbon-14 to carbon-12 in the organic artifact or fossil to be
dated, determined by a method called liquid scintillation. From the
equation

we know the ratio of the percentage of carbon-14 in the object we
are dating to the percentage of carbon-14 in the atmosphere is

. We solve this equation for t, to get

How To: Given the percentage of
carbon-14 in an object, determine its age.

1. Express the given percentage of carbon-14 as an
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equivalent decimal, k.
2. Substitute for k in the equation

and solve for the age, t.

Example 2: Finding the Age of a Bone

A bone fragment is found that contains 20% of its
original carbon-14. To the nearest year, how old is the
bone?

Solution

We substitute 20% = 0.20 for k in the equation and
solve for t:

The bone fragment is about 13,301 years old.
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Analysis of the Solution

The instruments that measure the percentage of carbon-14 are
extremely sensitive and, as we mention above, a scientist will need
to do much more work than we did in order to be satisfied. Even
so, carbon dating is only accurate to about 1%, so this age should
be given as

.

Try It 2

Cesium-137 has a half-life of about 30 years. If we begin
with 200 mg of cesium-137, will it take more or less than
230 years until only 1 milligram remains?

Solution

Calculating Doubling Time

For decaying quantities, we determined how long it took for half
of a substance to decay. For growing quantities, we might want to
find out how long it takes for a quantity to double. As we mentioned
above, the time it takes for a quantity to double is called the
doubling time.

Given the basic exponential growth equation

, doubling time can be found by solving for when the original
quantity has doubled, that is, by solving
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.
The formula is derived as follows:

Thus the doubling time is

Example 3: Finding a Function That
Describes Exponential Growth

According to Moore’s Law, the doubling time for the
number of transistors that can be put on a computer
chip is approximately two years. Give a function that
describes this behavior.

Solution

The formula is derived as follows:

Model exponential growth and decay | 1535



The function is

.

Try It 3

Recent data suggests that, as of 2013, the rate of growth
predicted by Moore’s Law no longer holds. Growth has
slowed to a doubling time of approximately three years.
Find the new function that takes that longer doubling time
into account.

Solution
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209. Use Newton’s Law of
Cooling

Exponential decay can also be applied to temperature. When a hot
object is left in surrounding air that is at a lower temperature,
the object’s temperature will decrease exponentially, leveling off
as it approaches the surrounding air temperature. On a graph of
the temperature function, the leveling off will correspond to a
horizontal asymptote at the temperature of the surrounding air.
Unless the room temperature is zero, this will correspond to a
vertical shift of the generic exponential decay function. This
translation leads to Newton’s Law of Cooling, the scientific formula
for temperature as a function of time as an object’s temperature is
equalized with the ambient temperature

This formula is derived as follows:

A General Note: Newton’s Law of
Cooling

The temperature of an object, T, in surrounding air
with temperature
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will behave according to the formula

where

• t is time
• A is the difference between the initial

temperature of the object and the surroundings
• k is a constant, the continuous rate of cooling of

the object

How To: Given a set of conditions,
apply Newton’s Law of Cooling.

1. Set

equal to the y-coordinate of the horizontal
asymptote (usually the ambient temperature).

2. Substitute the given values into the continuous
growth formula

to find the parameters A and k.
3. Substitute in the desired time to find the

temperature or the desired temperature to find
the time.
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Example 4: Using Newton’s Law of
Cooling

A cheesecake is taken out of the oven with an ideal
internal temperature of

, and is placed into a

refrigerator. After 10 minutes, the cheesecake has
cooled to

. If we must wait until the cheesecake has cooled to

before we eat it, how long will we have to wait?

Solution

Because the surrounding air temperature in the
refrigerator is 35 degrees, the cheesecake’s temperature
will decay exponentially toward 35, following the
equation
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We know the initial temperature was 165, so

.

We were given another data point,

, which we can use to solve for k.

This gives us the equation for the cooling of the
cheesecake:

.

Now we can solve for the time it will take for the
temperature to cool to 70 degrees.

It will take about 107 minutes, or one hour and 47
minutes, for the cheesecake to cool to

.
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Try It 4

A pitcher of water at 40 degrees Fahrenheit is placed into
a 70 degree room. One hour later, the temperature has
risen to 45 degrees. How long will it take for the
temperature to rise to 60 degrees?

Solution
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210. Use logistic-growth
models

Exponential growth cannot continue forever. Exponential models,
while they may be useful in the short term, tend to fall apart the
longer they continue. Consider an aspiring writer who writes a
single line on day one and plans to double the number of lines she
writes each day for a month. By the end of the month, she must
write over 17 billion lines, or one-half-billion pages. It is impractical,
if not impossible, for anyone to write that much in such a short
period of time. Eventually, an exponential model must begin to
approach some limiting value, and then the growth is forced to
slow. For this reason, it is often better to use a model with an
upper bound instead of an exponential growth model, though the
exponential growth model is still useful over a short term, before
approaching the limiting value.

The logistic growth model is approximately exponential at first,
but it has a reduced rate of growth as the output approaches the
model’s upper bound, called the carrying capacity. For constants
a, b, and c, the logistic growth of a population over time x is
represented by the model

Figure 6 shows how the growth rate changes over time. The graph
increases from left to right, but the growth rate only increases until
it reaches its point of maximum growth rate, at which point the rate
of increase decreases.

1542 | Use logistic-growth models



Figure 6

A General Note: Logistic Growth

The logistic growth model is

where

•
is the initial value

• c is the carrying capacity, or limiting value
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• b is a constant determined by the rate of
growth.

Example 5: Using the Logistic-Growth
Model

An influenza epidemic spreads through a population
rapidly, at a rate that depends on two factors: The more
people who have the flu, the more rapidly it spreads,
and also the more uninfected people there are, the more
rapidly it spreads. These two factors make the logistic
model a good one to study the spread of communicable
diseases. And, clearly, there is a maximum value for the
number of people infected: the entire population.

For example, at time t = 0 there is one person in a
community of 1,000 people who has the flu. So, in that
community, at most 1,000 people can have the flu.
Researchers find that for this particular strain of the flu,
the logistic growth constant is b = 0.6030. Estimate the
number of people in this community who will have had
this flu after ten days. Predict how many people in this
community will have had this flu after a long period of
time has passed.
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Solution

We substitute the given data into the logistic growth
model

Because at most 1,000 people, the entire population of
the community, can get the flu, we know the limiting
value is c = 1000. To find a, we use the formula that the
number of cases at time t = 0 is

, from which it follows that a = 999. This model predicts
that, after ten days, the number of people who have had
the flu is

. Because the actual number must be a whole number (a
person has either had the flu or not) we round to 294. In
the long term, the number of people who will contract
the flu is the limiting value, c = 1000.

Analysis of the Solution

Remember that, because we are dealing with a virus, we cannot
predict with certainty the number of people infected. The model
only approximates the number of people infected and will not give
us exact or actual values.

Figure 7 gives a good picture of how this model fits the data.
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Figure 7. The graph of

Try It 5

Using the model in Example 5, estimate the number of
cases of flu on day 15.

Solution
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211. Choose an appropriate
model for data

Now that we have discussed various mathematical models, we need
to learn how to choose the appropriate model for the raw data we
have. Many factors influence the choice of a mathematical model,
among which are experience, scientific laws, and patterns in the
data itself. Not all data can be described by elementary functions.
Sometimes, a function is chosen that approximates the data over
a given interval. For instance, suppose data were gathered on the
number of homes bought in the United States from the years 1960
to 2013. After plotting these data in a scatter plot, we notice that the
shape of the data from the years 2000 to 2013 follow a logarithmic
curve. We could restrict the interval from 2000 to 2010, apply
regression analysis using a logarithmic model, and use it to predict
the number of home buyers for the year 2015.

Three kinds of functions that are often useful in mathematical
models are linear functions, exponential functions, and logarithmic
functions. If the data lies on a straight line, or seems to lie
approximately along a straight line, a linear model may be best.
If the data is non-linear, we often consider an exponential or
logarithmic model, though other models, such as quadratic models,
may also be considered.

In choosing between an exponential model and a logarithmic
model, we look at the way the data curves. This is called the
concavity. If we draw a line between two data points, and all (or
most) of the data between those two points lies above that line,
we say the curve is concave down. We can think of it as a bowl
that bends downward and therefore cannot hold water. If all (or
most) of the data between those two points lies below the line, we
say the curve is concave up. In this case, we can think of a bowl
that bends upward and can therefore hold water. An exponential
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curve, whether rising or falling, whether representing growth or
decay, is always concave up away from its horizontal asymptote.
A logarithmic curve is always concave away from its vertical
asymptote. In the case of positive data, which is the most common
case, an exponential curve is always concave up, and a logarithmic
curve always concave down.

A logistic curve changes concavity. It starts out concave up and
then changes to concave down beyond a certain point, called a point
of inflection.

After using the graph to help us choose a type of function to use
as a model, we substitute points, and solve to find the parameters.
We reduce round-off error by choosing points as far apart as
possible.

Example 6: Choosing a Mathematical
Model

Does a linear, exponential, logarithmic, or logistic
model best fit the values listed below? Find the model,
and use a graph to check your choice.

x 1 2 3 4 5 6 7 8 9

y 0 1.3
86

2.
197

2.
773

3.
219

3.
584

3.8
92

4.1
59

4.3
94
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Solution

First, plot the data on a graph as in Figure 8. For the
purpose of graphing, round the data to two significant
digits.

Figure 8

Clearly, the points do not lie on a straight line, so we
reject a linear model. If we draw a line between any two
of the points, most or all of the points between those
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two points lie above the line, so the graph is concave
down, suggesting a logarithmic model. We can try

. Plugging in the first point,

, gives

. We reject the case that a = 0 (if it were, all outputs
would be 0), so we know

. Thus b = 1 and

. Next we can use the point

to solve for a:

Because

, an appropriate model for the data is

.

To check the accuracy of the model, we graph the
function together with the given points.
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Figure 9. The graph of

.

We can conclude that the model is a good fit to the
data.

Compare the figure above to the graph of

shown in Figure 10.
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Figure 10. The graph of

The graphs appear to be identical when x > 0. A quick
check confirms this conclusion:

for x > 0.

However, if x < 0, the graph of

includes a “extra” branch, as shown below. This occurs
because, while

cannot have negative values in the domain (as such
values would force the argument to be negative), the
function
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can have negative domain values.

Figure 11

Try It 6

Does a linear, exponential, or logarithmic model best fit
the data in the table below? Find the model.

x 1 2 3 4 5 6 7 8 9

y 3.
297

5.
437

8.9
63

14.
778

24.3
65

40.
172

66.
231

109.1
96

180.
034

Solution
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Expressing an Exponential Model in Base e

While powers and logarithms of any base can be used in modeling,
the two most common bases are and . In science and
mathematics, the base e is often preferred. We can use laws of
exponents and laws of logarithms to change any base to base e.

How To: Given a model with the form

, change it to the form

.

1. Rewrite

as

.
2. Use the power rule of logarithms to rewrite y as

.
3. Note that

and

in the equation
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.

Example 7: Changing to base e

Change the function

so that this same function is written in the form

.

Solution

The formula is derived as follows
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Try It 7

Change the function

to one having e as the base.

Solution
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212. Key Concepts & Glossary

Key Equations

Half-life
formula

If

, k < 0, the half-life is

.

Carbon-14
dating

.

A is the amount of carbon-14 when the plant or animal died
t is the amount of carbon-14 remaining today
is the age of the fossil in years

Doubling
time
formula

If

, k > 0, the doubling time is

Newton’s
Law of
Cooling

, where

is the ambient temperature,

, and k is the continuous rate of cooling.

Key Concepts

• The basic exponential function is
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. If b > 1, we have exponential growth; if 0 < b < 1, we have
exponential decay.

• We can also write this formula in terms of continuous growth
as

, where

is the starting value. If

is positive, then we have exponential growth when k > 0 and
exponential decay when k < 0.

• In general, we solve problems involving exponential growth or
decay in two steps. First, we set up a model and use the model
to find the parameters. Then we use the formula with these
parameters to predict growth and decay.

• We can find the age, t, of an organic artifact by measuring the
amount, k, of carbon-14 remaining in the artifact and using the
formula

to solve for t.
• Given a substance’s doubling time or half-time, we can find a

function that represents its exponential growth or decay.
• We can use Newton’s Law of Cooling to find how long it will

take for a cooling object to reach a desired temperature, or to
find what temperature an object will be after a given time.

• We can use logistic growth functions to model real-world
situations where the rate of growth changes over time, such as
population growth, spread of disease, and spread of rumors.

• We can use real-world data gathered over time to observe
trends. Knowledge of linear, exponential, logarithmic, and
logistic graphs help us to develop models that best fit our data.

• Any exponential function with the form

can be rewritten as an equivalent exponential function with
the form
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where

.

Glossary

carrying capacity
in a logistic model, the limiting value of the output

doubling time
the time it takes for a quantity to double

half-life
the length of time it takes for a substance to exponentially
decay to half of its original quantity

logistic growth model
a function of the form

where

is the initial value, c is the carrying capacity, or limiting value,
and b is a constant determined by the rate of growth

Newton’s Law of Cooling
the scientific formula for temperature as a function of time as
an object’s temperature is equalized with the ambient
temperature

order of magnitude
the power of ten, when a number is expressed in scientific
notation, with one non-zero digit to the left of the decimal
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213. Section Exercises

1. With what kind of exponential model would half-life be
associated? What role does half-life play in these models?

2. What is carbon dating? Why does it work? Give an example in
which carbon dating would be useful.

3. With what kind of exponential model would doubling time be
associated? What role does doubling time play in these models?

4. Define Newton’s Law of Cooling. Then name at least three real-
world situations where Newton’s Law of Cooling would be applied.

5. What is an order of magnitude? Why are orders of magnitude
useful? Give an example to explain.

6. The temperature of an object in degrees Fahrenheit after t
minutes is represented by the equation

. To the nearest degree, what is the temperature of the object after
one and a half hours?

For the following exercises, use the logistic growth model

.
7. Find and interpret

. Round to the nearest tenth.
8. Find and interpret

. Round to the nearest tenth.
9. Find the carrying capacity.
10. Graph the model.
11. Determine whether the data from the table could best be

represented as a function that is linear, exponential, or logarithmic.
Then write a formula for a model that represents the data.
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x f (x)

–2 0.694

–1 0.833

0 1

1 1.2

2 1.44

3 1.728

4 2.074

5 2.488

12. Rewrite

as an exponential equation with base e to five significant digits.
For the following exercises, enter the data from each table into a

graphing calculator and graph the resulting scatter plots. Determine
whether the data from the table could represent a function that is
linear, exponential, or logarithmic.

13.

x f (x)

1 2

2 4.079

3 5.296

4 6.159

5 6.828

6 7.375

7 7.838

8 8.238

9 8.592

10 8.908

14.
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x f(x)

1 2.4

2 2.88

3 3.456

4 4.147

5 4.977

6 5.972

7 7.166

8 8.6

9 10.32

10 12.383

15.

x f(x)

4 9.429

5 9.972

6 10.415

7 10.79

8 11.115

9 11.401

10 11.657

11 11.889

12 12.101

13 12.295

16.
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x f(x)

1.25 5.75

2.25 8.75

3.56 12.68

4.2 14.6

5.65 18.95

6.75 22.25

7.25 23.75

8.6 27.8

9.25 29.75

10.5 33.5

For the following exercises, use a graphing calculator and this
scenario: the population of a fish farm in t years is modeled by
the equation

.
17. Graph the function.
18. What is the initial population of fish?
19. To the nearest tenth, what is the doubling time for the fish

population?
20. To the nearest whole number, what will the fish population be

after 2 years?
21. To the nearest tenth, how long will it take for the population to

reach 900?
22. What is the carrying capacity for the fish population? Justify

your answer using the graph of P.
23. A substance has a half-life of 2.045 minutes. If the initial

amount of the substance was 132.8 grams, how many half-lives will
have passed before the substance decays to 8.3 grams? What is the
total time of decay?

24. The formula for an increasing population is given by

Section Exercises | 1563



where

is the initial population and r > 0. Derive a general formula for
the time t it takes for the population to increase by a factor of
M.

25. Recall the formula for calculating the magnitude of an
earthquake,

. Show each step for solving this equation algebraically for the
seismic moment S.

26. What is the y-intercept of the logistic growth model

? Show the steps for calculation. What does this point tell us about
the population?

27. Prove that

for positive

.
For the following exercises, use this scenario: A doctor prescribes

125 milligrams of a therapeutic drug that decays by about 30% each
hour.

28. To the nearest hour, what is the half-life of the drug?
29. Write an exponential model representing the amount of the

drug remaining in the patient’s system after t hours. Then use the
formula to find the amount of the drug that would remain in the
patient’s system after 3 hours. Round to the nearest milligram.

30. Using the model found in the previous exercise, find

and interpret the result. Round to the nearest hundredth.
For the following exercises, use this scenario: A tumor is injected

with 0.5 grams of Iodine-125, which has a decay rate of 1.15% per day.
31. To the nearest day, how long will it take for half of the

Iodine-125 to decay?
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32. Write an exponential model representing the amount of
Iodine-125 remaining in the tumor after t days. Then use the formula
to find the amount of Iodine-125 that would remain in the tumor
after 60 days. Round to the nearest tenth of a gram.

33. A scientist begins with 250 grams of a radioactive substance.
After 250 minutes, the sample has decayed to 32 grams. Rounding
to five significant digits, write an exponential equation representing
this situation. To the nearest minute, what is the half-life of this
substance?

34. The half-life of Radium-226 is 1590 years. What is the annual
decay rate? Express the decimal result to four significant digits and
the percentage to two significant digits.

35. The half-life of Erbium-165 is 10.4 hours. What is the hourly
decay rate? Express the decimal result to four significant digits and
the percentage to two significant digits.

36. A wooden artifact from an archeological dig contains 60
percent of the carbon-14 that is present in living trees. To the
nearest year, about how many years old is the artifact? (The half-life
of carbon-14 is 5730 years.)

37. A research student is working with a culture of bacteria that
doubles in size every twenty minutes. The initial population count
was 1350 bacteria. Rounding to five significant digits, write an
exponential equation representing this situation. To the nearest
whole number, what is the population size after 3 hours?

For the following exercises, use this scenario: A biologist recorded
a count of 360 bacteria present in a culture after 5 minutes and 1000
bacteria present after 20 minutes.

38. To the nearest whole number, what was the initial population
in the culture?

39. Rounding to six significant digits, write an exponential
equation representing this situation. To the nearest minute, how
long did it take the population to double?

For the following exercises, use this scenario: A pot of boiling
soup with an internal temperature of 100º Fahrenheit was taken off
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the stove to cool in a 69ºF room. After fifteen minutes, the internal
temperature of the soup was 95ºF.

40. Use Newton’s Law of Cooling to write a formula that models
this situation.

41. To the nearest minute, how long will it take the soup to cool to
80ºF?

42. To the nearest degree, what will the temperature be after 2
and a half hours?

For the following exercises, use this scenario: A turkey is taken out
of the oven with an internal temperature of 165ºF and is allowed to
cool in a 75ºF room. After half an hour, the internal temperature of
the turkey is 145ºF.

43. Write a formula that models this situation.
44. To the nearest degree, what will the temperature be after 50

minutes?
45. To the nearest minute, how long will it take the turkey to cool

to 110ºF?
For the following exercises, find the value of the number shown

on each logarithmic scale. Round all answers to the nearest
thousandth.

46.

47.

48. Plot each set of approximate values of intensity of sounds
on a logarithmic scale: Whisper:

, Vacuum:
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, Jet:

49. Recall the formula for calculating the magnitude of an
earthquake,

. One earthquake has magnitude 3.9 on the MMS scale. If a second
earthquake has 750 times as much energy as the first, find the
magnitude of the second quake. Round to the nearest hundredth.

For the following exercises, use this scenario: The equation

models the number of people in a town who have heard a rumor
after t days.

50. How many people started the rumor?
51. To the nearest whole number, how many people will have

heard the rumor after 3 days?
52. As t increases without bound, what value does N(t) approach?

Interpret your answer.
For the following exercise, choose the correct answer choice.
53. A doctor and injects a patient with 13 milligrams of radioactive

dye that decays exponentially. After 12 minutes, there are 4.75
milligrams of dye remaining in the patient’s system. Which is an
appropriate model for this situation?

A.

B.

C.

D.
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PART XXX

SYSTEMS OF LINEAR
EQUATIONS: TWO
VARIABLES
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214. Introduction to Systems
of Linear Equations: Two
Variables

Learning Objectives

By the end of this section, you will be able to:

• Solve systems of equations by graphing.
• Solve systems of equations by substitution.
• Solve systems of equations by addition.
• Identify inconsistent systems of equations

containing two variables.
• Express the solution of a system of dependent

equations containing two variables.

Figure 1. (credit: Thomas Sørenes)
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A skateboard manufacturer introduces a new line of boards. The
manufacturer tracks its costs, which is the amount it spends to
produce the boards, and its revenue, which is the amount it earns
through sales of its boards. How can the company determine if it is
making a profit with its new line? How many skateboards must be
produced and sold before a profit is possible? In this section, we will
consider linear equations with two variables to answer these and
similar questions.
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215. Solving Systems of
Equations by Graphing

In order to investigate situations such as that of the skateboard
manufacturer, we need to recognize that we are dealing with more
than one variable and likely more than one equation. A system of
linear equations consists of two or more linear equations made up
of two or more variables such that all equations in the system are
considered simultaneously. To find the unique solution to a system
of linear equations, we must find a numerical value for each variable
in the system that will satisfy all equations in the system at the same
time. Some linear systems may not have a solution and others may
have an infinite number of solutions. In order for a linear system
to have a unique solution, there must be at least as many equations
as there are variables. Even so, this does not guarantee a unique
solution.

In this section, we will look at systems of linear equations in two
variables, which consist of two equations that contain two different
variables. For example, consider the following system of linear
equations in two variables.

The solution to a system of linear equations in two variables is
any ordered pair that satisfies each equation independently. In this
example, the ordered pair (4, 7) is the solution to the system of linear
equations. We can verify the solution by substituting the values into
each equation to see if the ordered pair satisfies both equations.
Shortly we will investigate methods of finding such a solution if it
exists.
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In addition to considering the number of equations and variables,
we can categorize systems of linear equations by the number of
solutions. A consistent system of equations has at least one
solution. A consistent system is considered to be an independent
system if it has a single solution, such as the example we just
explored. The two lines have different slopes and intersect at one
point in the plane. A consistent system is considered to be a
dependent system if the equations have the same slope and the
same y-intercepts. In other words, the lines coincide so the
equations represent the same line. Every point on the line
represents a coordinate pair that satisfies the system. Thus, there
are an infinite number of solutions.

Another type of system of linear equations is an inconsistent
system, which is one in which the equations represent two parallel
lines. The lines have the same slope and different y-intercepts.
There are no points common to both lines; hence, there is no
solution to the system.

A General Note: Types of Linear
Systems

There are three types of systems of linear equations in
two variables, and three types of solutions.

• An independent system has exactly one
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solution pair . The point where the two

lines intersect is the only solution.
• An inconsistent system has no solution. Notice

that the two lines are parallel and will never
intersect.

• A dependent system has infinitely many
solutions. The lines are coincident. They are the
same line, so every coordinate pair on the line is a
solution to both equations.

Figure 2 compares graphical representations of each
type of system.

Figure 2
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How To: Given a system of linear
equations and an ordered pair, determine
whether the ordered pair is a solution.

1. Substitute the ordered pair into each equation
in the system.

2. Determine whether true statements result from
the substitution in both equations; if so, the
ordered pair is a solution.

Example 1: Determining Whether an
Ordered Pair Is a Solution to a System of
Equations

Determine whether the ordered pair is a

solution to the given system of equations.
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Solution

Substitute the ordered pair into both

equations.

The ordered pair satisfies both equations, so

it is the solution to the system.

Analysis of the Solution

We can see the solution clearly by plotting the graph of each
equation. Since the solution is an ordered pair that satisfies both
equations, it is a point on both of the lines and thus the point of
intersection of the two lines.
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Figure 3

Try It 1

Determine whether the ordered pair is a solution

to the following system.

Solution
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Solving Systems of Equations by Graphing

There are multiple methods of solving systems of linear equations.
For a system of linear equations in two variables, we can determine
both the type of system and the solution by graphing the system of
equations on the same set of axes.

Example 2: Solving a System of
Equations in Two Variables by Graphing

Solve the following system of equations by graphing.
Identify the type of system.

Solution

Solve the first equation for .
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Solve the second equation for .

Graph both equations on the same set of axes as in
Figure 4.

Figure 4

The lines appear to intersect at the point

. We can check to make sure that this is the solution to
the system by substituting the ordered pair into both
equations.
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The solution to the system is the ordered pair
, so the system is independent.

Try It 2

Solve the following system of equations by graphing.

Solution

Q& A

Can graphing be used if the system is
inconsistent or dependent?

Yes, in both cases we can still graph the system to
determine the type of system and solution. If the two lines
are parallel, the system has no solution and is
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inconsistent. If the two lines are identical, the system has
infinite solutions and is a dependent system.
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216. Solving Systems of
Equations by Substitution

Solving a linear system in two variables by graphing works well
when the solution consists of integer values, but if our solution
contains decimals or fractions, it is not the most precise method.
We will consider two more methods of solving a system of linear
equations that are more precise than graphing. One such method is
solving a system of equations by the substitution method, in which
we solve one of the equations for one variable and then substitute
the result into the second equation to solve for the second variable.
Recall that we can solve for only one variable at a time, which is the
reason the substitution method is both valuable and practical.

How To: Given a system of two
equations in two variables, solve using the
substitution method.

1. Solve one of the two equations for one of the
variables in terms of the other.

2. Substitute the expression for this variable into
the second equation, then solve for the remaining
variable.

3. Substitute that solution into either of the
original equations to find the value of the first
variable. If possible, write the solution as an
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ordered pair.
4. Check the solution in both equations.

Example 3: Solving a System of
Equations in Two Variables by
Substitution

Solve the following system of equations by
substitution.

Solution

First, we will solve the first equation for .
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Now we can substitute the expression for in
the second equation.

Now, we substitute into the first equation
and solve for .

Our solution is .

Check the solution by substituting into both

equations.

Try It 3

Solve the following system of equations by substitution.
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Solution

Q & A

Can the substitution method be used to
solve any linear system in two variables?

Yes, but the method works best if one of the equations
contains a coefficient of 1 or –1 so that we do not have to
deal with fractions.
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217. Solving Systems of
Equations in Two Variables
by the Addition Method

A third method of solving systems of linear equations is the
addition method. In this method, we add two terms with the same
variable, but opposite coefficients, so that the sum is zero. Of
course, not all systems are set up with the two terms of one variable
having opposite coefficients. Often we must adjust one or both
of the equations by multiplication so that one variable will be
eliminated by addition.

How To: Given a system of equations,
solve using the addition method.

1. Write both equations with x– and y-variables on
the left side of the equal sign and constants on the
right.

2. Write one equation above the other, lining up
corresponding variables. If one of the variables in
the top equation has the opposite coefficient of
the same variable in the bottom equation, add the
equations together, eliminating one variable. If
not, use multiplication by a nonzero number so
that one of the variables in the top equation has
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the opposite coefficient of the same variable in
the bottom equation, then add the equations to
eliminate the variable.

3. Solve the resulting equation for the remaining
variable.

4. Substitute that value into one of the original
equations and solve for the second variable.

5. Check the solution by substituting the values
into the other equation.

Example 4: Solving a System by the
Addition Method

Solve the given system of equations by addition.
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Solution

Both equations are already set equal to a constant.
Notice that the coefficient of in the second equation,
–1, is the opposite of the coefficient of in the first
equation, 1. We can add the two equations to eliminate

without needing to multiply by a constant.

Now that we have eliminated , we can solve the
resulting equation for .

Then, we substitute this value for into one of the
original equations and solve for .
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The solution to this system is .

Check the solution in the first equation.

Analysis of the Solution

We gain an important perspective on systems of equations by
looking at the graphical representation. See Figure 5 to find that
the equations intersect at the solution. We do not need to ask
whether there may be a second solution because observing the
graph confirms that the system has exactly one solution.
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Figure 5

Example 5: Using the Addition Method
When Multiplication of One Equation Is
Required

Solve the given system of equations by the addition
method.
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Solution

Adding these equations as presented will not
eliminate a variable. However, we see that the first
equation has in it and the second equation has . So
if we multiply the second equation by the x-terms
will add to zero.

Now, let’s add them.

For the last step, we substitute into one of
the original equations and solve for .
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Our solution is the ordered pair . Check the

solution in the original second equation.

Figure 6

Try It 4

Solve the system of equations by addition.
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Solution

Example 6: Using the Addition Method
When Multiplication of Both Equations Is
Required

Solve the given system of equations in two variables
by addition.

Solution

One equation has and the other has . The least
common multiple is so we will have to multiply
both equations by a constant in order to eliminate one
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variable. Let’s eliminate by multiplying the first
equation by and the second equation by .

Then, we add the two equations together.

Substitute into the original first equation.

The solution is . Check it in the other

equation.
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Figure 7

Example 7: Using the Addition Method
in Systems of Equations Containing
Fractions

Solve the given system of equations in two variables
by addition.
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Solution

First clear each equation of fractions by multiplying
both sides of the equation by the least common
denominator.

Now multiply the second equation by so that we
can eliminate the x-variable.

Add the two equations to eliminate the x-variable and
solve the resulting equation.
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Substitute into the first equation.

The solution is . Check it in the other

equation.
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Try It 5

Solve the system of equations by addition.

Solution
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218. Identifying and
Expressing Solutions to
Systems of Equations

Now that we have several methods for solving systems of equations,
we can use the methods to identify inconsistent systems. Recall that
an inconsistent system consists of parallel lines that have the same
slope but different -intercepts. They will never intersect. When
searching for a solution to an inconsistent system, we will come up
with a false statement, such as .

Example 8: Solving an Inconsistent
System of Equations

Solve the following system of equations.
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Solution

We can approach this problem in two ways. Because
one equation is already solved for , the most obvious
step is to use substitution.

Clearly, this statement is a contradiction because
. Therefore, the system has no solution.

The second approach would be to first manipulate the
equations so that they are both in slope-intercept form.
We manipulate the first equation as follows.

We then convert the second equation expressed to
slope-intercept form.

Comparing the equations, we see that they have the
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same slope but different y-intercepts. Therefore, the
lines are parallel and do not intersect.

Analysis of the Solution

Writing the equations in slope-intercept form confirms that the
system is inconsistent because all lines will intersect eventually
unless they are parallel. Parallel lines will never intersect; thus, the
two lines have no points in common. The graphs of the equations in
this example are shown in Figure 8.

Figure 8

1602 | Identifying and Expressing Solutions to Systems of Equations



Try It 6

Solve the following system of equations in two variables.

Solution

Expressing the Solution of a System of
Dependent Equations Containing Two Variables

Recall that a dependent system of equations in two variables is
a system in which the two equations represent the same line.
Dependent systems have an infinite number of solutions because
all of the points on one line are also on the other line. After using
substitution or addition, the resulting equation will be an identity,
such as .

Example 9: Finding a Solution to a
Dependent System of Linear Equations

Find a solution to the system of equations using the
addition method.
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Solution

With the addition method, we want to eliminate one
of the variables by adding the equations. In this case,
let’s focus on eliminating . If we multiply both sides of
the first equation by , then we will be able to
eliminate the -variable.

Now add the equations.

We can see that there will be an infinite number of
solutions that satisfy both equations.
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Analysis of the Solution

If we rewrote both equations in the slope-intercept form, we might
know what the solution would look like before adding. Let’s look at
what happens when we convert the system to slope-intercept form.

See Figure 9. Notice the results are the same. The general solution

to the system is .
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Figure 9

Try It 7

Solve the following system of equations in two variables.

Solution
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219. Using Systems of
Equations to Investigate
Profits

Using what we have learned about systems of equations, we can
return to the skateboard manufacturing problem at the beginning of
the section. The skateboard manufacturer’s revenue function is the
function used to calculate the amount of money that comes into the
business. It can be represented by the equation , where

quantity and price. The revenue function is shown in
orange in Figure 10.

The cost function is the function used to calculate the costs of
doing business. It includes fixed costs, such as rent and salaries, and
variable costs, such as utilities. The cost function is shown in blue in
Figure 10. The -axis represents quantity in hundreds of units. The
y-axis represents either cost or revenue in hundreds of dollars.

The point at which the two lines intersect is called the break-even
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point. We can see from the graph that if 700 units are produced,
the cost is $3,300 and the revenue is also $3,300. In other words,
the company breaks even if they produce and sell 700 units. They
neither make money nor lose money.

The shaded region to the right of the break-even point represents
quantities for which the company makes a profit. The shaded region
to the left represents quantities for which the company suffers a
loss. The profit function is the revenue function minus the cost
function, written as . Clearly,

knowing the quantity for which the cost equals the revenue is of
great importance to businesses.

Example 10: Finding the Break-Even
Point and the Profit Function Using
Substitution

Given the cost function
and the revenue

function , find the break-even point

and the profit function.
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Solution

Write the system of equations using to replace
function notation.

Substitute the expression from
the first equation into the second equation and solve for

.

Then, we substitute into either the
cost function or the revenue function.

The break-even point is .

The profit function is found using the formula
.

The profit function is .
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Analysis of the Solution

The cost to produce 50,000 units is $77,500, and the revenue from
the sales of 50,000 units is also $77,500. To make a profit, the
business must produce and sell more than 50,000 units.

Figure 11

We see from the graph in Figure 12 that the profit function has a
negative value until , when the graph crosses the

x-axis. Then, the graph emerges into positive y-values and
continues on this path as the profit function is a straight line. This
illustrates that the break-even point for businesses occurs when the
profit function is 0. The area to the left of the break-even point
represents operating at a loss.
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Figure 12

Example 11: Writing and Solving a
System of Equations in Two Variables

The cost of a ticket to the circus is $25.00 for children
and $50.00 for adults. On a certain day, attendance at
the circus is 2,000 and the total gate revenue is $70,000.
How many children and how many adults bought
tickets?
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Solution

Let c = the number of children and a = the number of
adults in attendance.

The total number of people is . We can use
this to write an equation for the number of people at the
circus that day.

The revenue from all children can be found by
multiplying $25.00 by the number of children, . The
revenue from all adults can be found by multiplying
$50.00 by the number of adults, . The total revenue
is $70,000. We can use this to write an equation for the
revenue.

We now have a system of linear equations in two
variables.

In the first equation, the coefficient of both variables
is 1. We can quickly solve the first equation for either
or . We will solve for .
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Substitute the expression in the second
equation for and solve for .

Substitute into the first equation to
solve for .

We find that children and adults bought
tickets to the circus that day.

Try It 8

Meal tickets at the circus cost $4.00 for children and
$12.00 for adults. If 1,650 meal tickets were bought for a
total of $14,200, how many children and how many adults
bought meal tickets?

Solution
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220. Key Concepts & Glossary

Key Concepts

• A system of linear equations consists of two or more equations
made up of two or more variables such that all equations in the
system are considered simultaneously.

• The solution to a system of linear equations in two variables is
any ordered pair that satisfies each equation independently.

• Systems of equations are classified as independent with one
solution, dependent with an infinite number of solutions, or
inconsistent with no solution.

• One method of solving a system of linear equations in two
variables is by graphing. In this method, we graph the
equations on the same set of axes.

• Another method of solving a system of linear equations is by
substitution. In this method, we solve for one variable in one
equation and substitute the result into the second equation.

• A third method of solving a system of linear equations is by
addition, in which we can eliminate a variable by adding
opposite coefficients of corresponding variables.

• It is often necessary to multiply one or both equations by a
constant to facilitate elimination of a variable when adding the
two equations together.

• Either method of solving a system of equations results in a
false statement for inconsistent systems because they are
made up of parallel lines that never intersect.

• The solution to a system of dependent equations will always be
true because both equations describe the same line.

• Systems of equations can be used to solve real-world problems
that involve more than one variable, such as those relating to
revenue, cost, and profit.
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Glossary

addition method
an algebraic technique used to solve systems of linear
equations in which the equations are added in a way that
eliminates one variable, allowing the resulting equation to be
solved for the remaining variable; substitution is then used to
solve for the first variable

break-even point
the point at which a cost function intersects a revenue
function; where profit is zero

consistent system
a system for which there is a single solution to all equations in
the system and it is an independent system, or if there are an
infinite number of solutions and it is a dependent system

cost function
the function used to calculate the costs of doing business; it
usually has two parts, fixed costs and variable costs

dependent system
a system of linear equations in which the two equations
represent the same line; there are an infinite number of
solutions to a dependent system

inconsistent system
a system of linear equations with no common solution because
they represent parallel lines, which have no point or line in
common

independent system
a system of linear equations with exactly one solution pair

profit function
the profit function is written as

, revenue minus cost
revenue function

the function that is used to calculate revenue, simply written
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as , where quantity and price
substitution method

an algebraic technique used to solve systems of linear
equations in which one of the two equations is solved for one
variable and then substituted into the second equation to solve
for the second variable

system of linear equations
a set of two or more equations in two or more variables that
must be considered simultaneously.
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221. Section Exercises

1. Can a system of linear equations have exactly two solutions?
Explain why or why not.

2. If you are performing a break-even analysis for a business and
their cost and revenue equations are dependent, explain what this
means for the company’s profit margins.

3. If you are solving a break-even analysis and get a negative
break-even point, explain what this signifies for the company?

4. If you are solving a break-even analysis and there is no break-
even point, explain what this means for the company. How should
they ensure there is a break-even point?

5. Given a system of equations, explain at least two different
methods of solving that system.

For the following exercises, determine whether the given ordered
pair is a solution to the system of equations.

6. and

7. and

8. and

9. and

10. and

For the following exercises, solve each system by substitution.

11.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

For the following exercises, solve each system by addition.
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21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

For the following exercises, solve each system by any method.
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31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

For the following exercises, graph the system of equations and
state whether the system is consistent, inconsistent, or dependent
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and whether the system has one solution, no solution, or infinite
solutions.

41.

42.

43.

44.

45.

For the following exercises, use the intersect function on a
graphing device to solve each system. Round all answers to the
nearest hundredth.

46.

47.

48.

49.
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50.

For the following exercises, solve each system in terms of
and where are nonzero numbers.

Note that and .

51.

52.

53.

54.

55.

For the following exercises, solve for the desired quantity.
56. A stuffed animal business has a total cost of production

and a revenue function . Find the
break-even point.

57. A fast-food restaurant has a cost of production
and a revenue function .

When does the company start to turn a profit?
58. A cell phone factory has a cost of production

and a revenue function

. What is the break-even point?

59. A musician charges where

is the total number of attendees at the concert. The venue charges
$80 per ticket. After how many people buy tickets does the venue
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break even, and what is the value of the total tickets sold at that
point?

60. A guitar factory has a cost of production
. If the company needs to break even

after 150 units sold, at what price should they sell each guitar?
Round up to the nearest dollar, and write the revenue function.

For the following exercises, use a system of linear equations with
two variables and two equations to solve.

61. Find two numbers whose sum is 28 and difference is 13.
62. A number is 9 more than another number. Twice the sum of

the two numbers is 10. Find the two numbers.
63. The startup cost for a restaurant is $120,000, and each meal

costs $10 for the restaurant to make. If each meal is then sold for
$15, after how many meals does the restaurant break even?

64. A moving company charges a flat rate of $150, and an
additional $5 for each box. If a taxi service would charge $20 for
each box, how many boxes would you need for it to be cheaper to
use the moving company, and what would be the total cost?

65. A total of 1,595 first- and second-year college students
gathered at a pep rally. The number of freshmen exceeded the
number of sophomores by 15. How many freshmen and sophomores
were in attendance?

66. 276 students enrolled in a freshman-level chemistry class. By
the end of the semester, 5 times the number of students passed as
failed. Find the number of students who passed, and the number of
students who failed.

67. There were 130 faculty at a conference. If there were 18 more
women than men attending, how many of each gender attended the
conference?

68. A jeep and BMW enter a highway running east-west at the
same exit heading in opposite directions. The jeep entered the
highway 30 minutes before the BMW did, and traveled 7 mph slower
than the BMW. After 2 hours from the time the BMW entered the
highway, the cars were 306.5 miles apart. Find the speed of each car,
assuming they were driven on cruise control.
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69. If a scientist mixed 10% saline solution with 60% saline
solution to get 25 gallons of 40% saline solution, how many gallons
of 10% and 60% solutions were mixed?

70. An investor earned triple the profits of what she earned last
year. If she made $500,000.48 total for both years, how much did
she earn in profits each year?

71. An investor who dabbles in real estate invested 1.1 million
dollars into two land investments. On the first investment, Swan
Peak, her return was a 110% increase on the money she invested. On
the second investment, Riverside Community, she earned 50% over
what she invested. If she earned $1 million in profits, how much did
she invest in each of the land deals?

72. If an investor invests a total of $25,000 into two bonds, one

that pays 3% simple interest, and the other that pays

interest, and the investor earns $737.50 annual interest, how much
was invested in each account?

73. If an investor invests $23,000 into two bonds, one that pays
4% in simple interest, and the other paying 2% simple interest, and
the investor earns $710.00 annual interest, how much was invested
in each account?

74. CDs cost $5.96 more than DVDs at All Bets Are Off Electronics.
How much would 6 CDs and 2 DVDs cost if 5 CDs and 2 DVDs cost
$127.73?

75. A store clerk sold 60 pairs of sneakers. The high-tops sold for
$98.99 and the low-tops sold for $129.99. If the receipts for the two
types of sales totaled $6,404.40, how many of each type of sneaker
were sold?

76. A concert manager counted 350 ticket receipts the day after
a concert. The price for a student ticket was $12.50, and the price
for an adult ticket was $16.00. The register confirms that $5,075 was
taken in. How many student tickets and adult tickets were sold?

77. Admission into an amusement park for 4 children and 2 adults
is $116.90. For 6 children and 3 adults, the admission is $175.35.
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Assuming a different price for children and adults, what is the price
of the child’s ticket and the price of the adult ticket?
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PART XXXI

SYSTEMS OF LINEAR
EQUATIONS: THREE
VARIABLES
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222. Introduction to Systems
of Linear Equations: Three
Variables

Learning Objectives

By the end of this section, you will be able to:

• Solve systems of three equations in three variables.
• Identify inconsistent systems of equations

containing three variables.
• Express the solution of a system of dependent

equations containing three variables.
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Figure 1. (credit: “Elembis,” Wikimedia Commons)

John received an inheritance of $12,000 that he divided into three
parts and invested in three ways: in a money-market fund paying
3% annual interest; in municipal bonds paying 4% annual interest;
and in mutual funds paying 7% annual interest. John invested $4,000
more in municipal funds than in municipal bonds. He earned $670
in interest the first year. How much did John invest in each type of
fund?

Understanding the correct approach to setting up problems such
as this one makes finding a solution a matter of following a pattern.
We will solve this and similar problems involving three equations
and three variables in this section. Doing so uses similar techniques
as those used to solve systems of two equations in two variables.
However, finding solutions to systems of three equations requires a
bit more organization and a touch of visual gymnastics.
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223. Solving Systems of Three
Equations in Three Variables

In order to solve systems of equations in three variables, known
as three-by-three systems, the primary tool we will be using is
called Gaussian elimination, named after the prolific German
mathematician Karl Friedrich Gauss. While there is no definitive
order in which operations are to be performed, there are specific
guidelines as to what type of moves can be made. We may number
the equations to keep track of the steps we apply. The goal is to
eliminate one variable at a time to achieve upper triangular form,
the ideal form for a three-by-three system because it allows for
straightforward back-substitution to find a solution

which we call an ordered triple. A system in upper triangular form
looks like the following:

The third equation can be solved for and then we back-substitute
to find and . To write the system in upper triangular form, we
can perform the following operations:

1. Interchange the order of any two equations.
2. Multiply both sides of an equation by a nonzero constant.
3. Add a nonzero multiple of one equation to another equation.

The solution set to a three-by-three system is an ordered triple
. Graphically, the ordered triple defines the point that

is the intersection of three planes in space. You can visualize such
an intersection by imagining any corner in a rectangular room. A
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corner is defined by three planes: two adjoining walls and the floor
(or ceiling). Any point where two walls and the floor meet represents
the intersection of three planes.

A General Note: Number of Possible
Solutions

Figure 2 and Figure 3 illustrate possible solution
scenarios for three-by-three systems.

• Systems that have a single solution are those
which, after elimination, result in a solution set
consisting of an ordered triple .

Graphically, the ordered triple defines a point that
is the intersection of three planes in space.

• Systems that have an infinite number of
solutions are those which, after elimination, result
in an expression that is always true, such as

. Graphically, an infinite number of
solutions represents a line or coincident plane
that serves as the intersection of three planes in
space.

• Systems that have no solution are those that,
after elimination, result in a statement that is a
contradiction, such as . Graphically, a
system with no solution is represented by three
planes with no point in common.
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Figure 2. (a)Three planes intersect at a single point, representing
a three-by-three system with a single solution. (b) Three planes
intersect in a line, representing a three-by-three system with
infinite solutions.

Figure 3
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Example 1: Determining Whether an
Ordered Triple Is a Solution to a System

Determine whether the ordered triple is

a solution to the system.

Solution

We will check each equation by substituting in the
values of the ordered triple for , and .

The ordered triple is indeed a solution

to the system.
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How To: Given a linear system of three
equations, solve for three unknowns.

1. Pick any pair of equations and solve for one
variable.

2. Pick another pair of equations and solve for the
same variable.

3. You have created a system of two equations in
two unknowns. Solve the resulting two-by-two
system.

4. Back-substitute known variables into any one of
the original equations and solve for the missing
variable.

Example 2: Solving a System of Three
Equations in Three Variables by
Elimination

Find a solution to the following system:
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Solution

There will always be several choices as to where to
begin, but the most obvious first step here is to
eliminate by adding equations (1) and (2).

The second step is multiplying equation (1) by
and adding the result to equation (3). These two steps
will eliminate the variable .

In equations (4) and (5), we have created a new two-
by-two system. We can solve for by adding the two
equations.
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Choosing one equation from each new system, we
obtain the upper triangular form:

Next, we back-substitute into equation (4) and
solve for .

Finally, we can back-substitute and
into equation (1). This will yield the solution for .

The solution is the ordered triple .
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Figure 4

Example 3: Solving a Real-World
Problem Using a System of Three
Equations in Three Variables

In the problem posed at the beginning of the section,
John invested his inheritance of $12,000 in three
different funds: part in a money-market fund paying 3%
interest annually; part in municipal bonds paying 4%
annually; and the rest in mutual funds paying 7%
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annually. John invested $4,000 more in mutual funds
than he invested in municipal bonds. The total interest
earned in one year was $670. How much did he invest in
each type of fund?

Solution

To solve this problem, we use all of the information
given and set up three equations. First, we assign a
variable to each of the three investment amounts:

The first equation indicates that the sum of the three
principal amounts is $12,000.

We form the second equation according to the
information that John invested $4,000 more in mutual
funds than he invested in municipal bonds.

The third equation shows that the total amount of
interest earned from each fund equals $670.
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Then, we write the three equations as a system.

To make the calculations simpler, we can multiply the
third equation by 100. Thus,

Step 1. Interchange equation (2) and equation (3) so
that the two equations with three variables will line up.

Step 2. Multiply equation (1) by and add to
equation (2). Write the result as row 2.

Step 3. Add equation (2) to equation (3) and write the
result as equation (3).

1640 | Solving Systems of Three Equations in Three Variables



Step 4. Solve for in equation (3). Back-substitute
that value in equation (2) and solve for . Then, back-
substitute the values for and into equation (1) and
solve for .

John invested $2,000 in a money-market fund, $3,000
in municipal bonds, and $7,000 in mutual funds.

Try It 1

Solve the system of equations in three variables.
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Solution
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224. Inconsistent and
Dependent Systems in Three
Variables

Just as with systems of equations in two variables, we may come
across an inconsistent system of equations in three variables,
which means that it does not have a solution that satisfies all three
equations. The equations could represent three parallel planes, two
parallel planes and one intersecting plane, or three planes that
intersect the other two but not at the same location. The process of
elimination will result in a false statement, such as or some
other contradiction.

Example 4: Solving an Inconsistent
System of Three Equations in Three
Variables

Solve the following system.
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Solution

Looking at the coefficients of , we can see that we
can eliminate by adding equation (1) to equation (2).

Next, we multiply equation (1) by and add it to
equation (3).

Then, we multiply equation (4) by 2 and add it to
equation (5).

The final equation is a contradiction, so we
conclude that the system of equations in inconsistent
and, therefore, has no solution.
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Analysis of the Solution

In this system, each plane intersects the other two, but not at the
same location. Therefore, the system is inconsistent.

Try It 2

Solve the system of three equations in three variables.

Solution

Expressing the Solution of a System of
Dependent Equations Containing Three
Variables

We know from working with systems of equations in two variables
that a dependent system of equations has an infinite number of
solutions. The same is true for dependent systems of equations
in three variables. An infinite number of solutions can result from
several situations. The three planes could be the same, so that
a solution to one equation will be the solution to the other two
equations. All three equations could be different but they intersect
on a line, which has infinite solutions. Or two of the equations could
be the same and intersect the third on a line.
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Example 5: Finding the Solution to a
Dependent System of Equations

Find the solution to the given system of three
equations in three variables.

Solution

First, we can multiply equation (1) by and add it to
equation (2).

We do not need to proceed any further. The result we
get is an identity, , which tells us that this
system has an infinite number of solutions. There are
other ways to begin to solve this system, such as
multiplying equation (3) by , and adding it to
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equation (1). We then perform the same steps as above
and find the same result, .

When a system is dependent, we can find general
expressions for the solutions. Adding equations (1) and
(3), we have

We then solve the resulting equation for .

We back-substitute the expression for into one of
the equations and solve for .

So the general solution is . In this

solution, can be any real number. The values of and
are dependent on the value selected for .
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Analysis of the Solution

As shown in Figure 5, two of the planes are the same and they
intersect the third plane on a line. The solution set is infinite, as all
points along the intersection line will satisfy all three equations.

Figure 5

Q & A

Does the generic solution to a
dependent system always have to be
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written in terms of

No, you can write the generic solution in terms of any
of the variables, but it is common to write it in terms of x
and if needed and .

Try It 3

Solve the following system.

Solution
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225. Key Concepts & Glossary

Key Concepts

• A solution set is an ordered triple that

represents the intersection of three planes in space.
• A system of three equations in three variables can be solved by

using a series of steps that forces a variable to be eliminated.
The steps include interchanging the order of equations,
multiplying both sides of an equation by a nonzero constant,
and adding a nonzero multiple of one equation to another
equation.

• Systems of three equations in three variables are useful for
solving many different types of real-world problems.

• A system of equations in three variables is inconsistent if no
solution exists. After performing elimination operations, the
result is a contradiction.

• Systems of equations in three variables that are inconsistent
could result from three parallel planes, two parallel planes and
one intersecting plane, or three planes that intersect the other
two but not at the same location.

• A system of equations in three variables is dependent if it has
an infinite number of solutions. After performing elimination
operations, the result is an identity.

• Systems of equations in three variables that are dependent
could result from three identical planes, three planes
intersecting at a line, or two identical planes that intersect the
third on a line.

1650 | Key Concepts & Glossary



Glossary

solution set
the set of all ordered pairs or triples that satisfy all equations in
a system of equations
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226. Section Exercises

1. Can a linear system of three equations have exactly two solutions?
Explain why or why not

2. If a given ordered triple solves the system of equations, is that
solution unique? If so, explain why. If not, give an example where it
is not unique.

3. If a given ordered triple does not solve the system of equations,
is there no solution? If so, explain why. If not, give an example.

4. Using the method of addition, is there only one way to solve the
system?

5. Can you explain whether there can be only one method to
solve a linear system of equations? If yes, give an example of such a
system of equations. If not, explain why not.

For the following exercises, determine whether the ordered triple
given is the solution to the system of equations.

6. and

7. and

8. and

9. and
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10. and

For the following exercises, solve each system by substitution.

11.

12.

13.

14.

15.

16.

For the following exercises, solve each system by Gaussian
elimination.

17.
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18.

19.

20.

21.

22.

23.

24.

25.
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26.

27.

28.

29.

30.

31.

32.
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33.

34.

35.

36.

37.

38.

39.

1656 | Section Exercises



40.

41.

42.

43.

44.

45.

For the following exercises, solve the system for , and .

46.

47.
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48.

49.

50.

51. Three even numbers sum up to 108. The smaller is half the

larger and the middle number is

the larger. What are the three numbers?
52. Three numbers sum up to 147. The smallest number is half the

middle number, which is half the largest number. What are the three
numbers?

53. At a family reunion, there were only blood relatives, consisting
of children, parents, and grandparents, in attendance. There were
400 people total. There were twice as many parents as
grandparents, and 50 more children than parents. How many
children, parents, and grandparents were in attendance?

54. An animal shelter has a total of 350 animals comprised of cats,
dogs, and rabbits. If the number of rabbits is 5 less than one-half the
number of cats, and there are 20 more cats than dogs, how many of
each animal are at the shelter?

55. Your roommate, Sarah, offered to buy groceries for you and
your other roommate. The total bill was $82. She forgot to save the
individual receipts but remembered that your groceries were $0.05
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cheaper than half of her groceries, and that your other roommate’s
groceries were $2.10 more than your groceries. How much was each
of your share of the groceries?

56. Your roommate, John, offered to buy household supplies for
you and your other roommate. You live near the border of three
states, each of which has a different sales tax. The total amount
of money spent was $100.75. Your supplies were bought with 5%
tax, John’s with 8% tax, and your third roommate’s with 9% sales
tax. The total amount of money spent without taxes is $93.50. If
your supplies before tax were $1 more than half of what your third
roommate’s supplies were before tax, how much did each of you
spend? Give your answer both with and without taxes.

57. Three coworkers work for the same employer. Their jobs are
warehouse manager, office manager, and truck driver. The sum of
the annual salaries of the warehouse manager and office manager
is $82,000. The office manager makes $4,000 more than the truck
driver annually. The annual salaries of the warehouse manager and
the truck driver total $78,000. What is the annual salary of each of
the co-workers?

58. At a carnival, $2,914.25 in receipts were taken at the end of
the day. The cost of a child’s ticket was $20.50, an adult ticket was
$29.75, and a senior citizen ticket was $15.25. There were twice as
many senior citizens as adults in attendance, and 20 more children
than senior citizens. How many children, adult, and senior citizen
tickets were sold?

59. A local band sells out for their concert. They sell all 1,175 tickets
for a total purse of $28,112.50. The tickets were priced at $20 for
student tickets, $22.50 for children, and $29 for adult tickets. If the
band sold twice as many adult as children tickets, how many of each
type was sold?

60. In a bag, a child has 325 coins worth $19.50. There were three
types of coins: pennies, nickels, and dimes. If the bag contained the
same number of nickels as dimes, how many of each type of coin
was in the bag?

61. Last year, at Haven’s Pond Car Dealership, for a particular
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model of BMW, Jeep, and Toyota, one could purchase all three cars
for a total of $140,000. This year, due to inflation, the same cars
would cost $151,830. The cost of the BMW increased by 8%, the Jeep
by 5%, and the Toyota by 12%. If the price of last year’s Jeep was
$7,000 less than the price of last year’s BMW, what was the price of
each of the three cars last year?

62. A recent college graduate took advantage of his business
education and invested in three investments immediately after
graduating. He invested $80,500 into three accounts, one that paid

4% simple interest, one that paid simple interest, and one

that paid simple interest. He earned $2,670 interest at the

end of one year. If the amount of the money invested in the second
account was four times the amount invested in the third account,
how much was invested in each account?

63. You inherit one million dollars. You invest it all in three
accounts for one year. The first account pays 3% compounded
annually, the second account pays 4% compounded annually, and
the third account pays 2% compounded annually. After one year,
you earn $34,000 in interest. If you invest four times the money into
the account that pays 3% compared to 2%, how much did you invest
in each account?

64. You inherit one hundred thousand dollars. You invest it all in
three accounts for one year. The first account pays 4% compounded
annually, the second account pays 3% compounded annually, and
the third account pays 2% compounded annually. After one year,
you earn $3,650 in interest. If you invest five times the money in the
account that pays 4% compared to 3%, how much did you invest in
each account?

65. The top three countries in oil consumption in a certain year
are as follows: the United States, Japan, and China. In millions of
barrels per day, the three top countries consumed 39.8% of the
world’s consumed oil. The United States consumed 0.7% more than
four times China’s consumption. The United States consumed 5%

1660 | Section Exercises



more than triple Japan’s consumption. What percent of the world oil
consumption did the United States, Japan, and China consume?1

66. The top three countries in oil production in the same year are
Saudi Arabia, the United States, and Russia. In millions of barrels per
day, the top three countries produced 31.4% of the world’s produced
oil. Saudi Arabia and the United States combined for 22.1% of the
world’s production, and Saudi Arabia produced 2% more oil than
Russia. What percent of the world oil production did Saudi Arabia,
the United States, and Russia produce?2

67. The top three sources of oil imports for the United States in
the same year were Saudi Arabia, Mexico, and Canada. The three
top countries accounted for 47% of oil imports. The United States
imported 1.8% more from Saudi Arabia than they did from Mexico,
and 1.7% more from Saudi Arabia than they did from Canada. What
percent of the United States oil imports were from these three
countries?3

68. The top three oil producers in the United States in a certain
year are the Gulf of Mexico, Texas, and Alaska. The three regions
were responsible for 64% of the United States oil production. The
Gulf of Mexico and Texas combined for 47% of oil production. Texas

1. “Oil reserves, production and consumption in 2001,”
accessed April 6, 2014, http://scaruffi.com/politics/
oil.html

2. “Oil reserves, production and consumption in 2001,”
accessed April 6, 2014, http://scaruffi.com/politics/
oil.html

3. “Oil reserves, production and consumption in 2001,”
accessed April 6, 2014, http://scaruffi.com/politics/
oil.html
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produced 3% more than Alaska. What percent of United States oil
production came from these regions?4

69. At one time, in the United States, 398 species of animals were
on the endangered species list. The top groups were mammals,
birds, and fish, which comprised 55% of the endangered species.
Birds accounted for 0.7% more than fish, and fish accounted for 1.5%
more than mammals. What percent of the endangered species came
from mammals, birds, and fish?

70. Meat consumption in the United States can be broken into
three categories: red meat, poultry, and fish. If fish makes up 4%
less than one-quarter of poultry consumption, and red meat
consumption is 18.2% higher than poultry consumption, what are
the percentages of meat consumption?5

4. “USA: The coming global oil crisis,” accessed April 6,
2014, http://www.oilcrisis.com/us/

5. “The United States Meat Industry at a Glance,” accessed
April 6, 2014, http://www.meatami.com/ht/d/sp/i/
47465/pid/47465
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PART XXXII

SYSTEMS OF NONLINEAR
EQUATIONS AND
INEQUALITIES: TWO
VARIABLES
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227. Introduction to Systems
of Nonlinear Equations and
Inequalities: Two Variables

Learning Objectives

By the end of this section, you will be able to:

• Solve a system of nonlinear equations using
substitution.

• Solve a system of nonlinear equations using
elimination.

• Graph a nonlinear inequality.
• Graph a system of nonlinear inequalities.

Halley’s Comet orbits the sun about once every 75 years. Its path
can be considered to be a very elongated ellipse. Other comets
follow similar paths in space. These orbital paths can be studied
using systems of equations. These systems, however, are different
from the ones we considered in the previous section because the
equations are not linear.

Introduction to Systems of Nonlinear
Equations and Inequalities: Two



Figure 1. Halley’s Comet (credit: “NASA Blueshift”/Flickr)

In this section, we will consider the intersection of a parabola and a
line, a circle and a line, and a circle and an ellipse. The methods for
solving systems of nonlinear equations are similar to those for linear
equations.
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228. Solving a System of
Nonlinear Equations Using
Substitution

A system of nonlinear equations is a system of two or more
equations in two or more variables containing at least one equation
that is not linear. Recall that a linear equation can take the form

. Any equation that cannot be written in
this form in nonlinear. The substitution method we used for linear
systems is the same method we will use for nonlinear systems. We
solve one equation for one variable and then substitute the result
into the second equation to solve for another variable, and so on.
There is, however, a variation in the possible outcomes.

Intersection of a Parabola and a Line

There are three possible types of solutions for a system of nonlinear
equations involving a parabola and a line.
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A General Note: Possible Types of
Solutions for Points of Intersection of a
Parabola and a Line

Figure 2 illustrates possible solution sets for a system
of equations involving a parabola and a line.

• No solution. The line will never intersect the
parabola.

• One solution. The line is tangent to the parabola
and intersects the parabola at exactly one point.

• Two solutions. The line crosses on the inside of
the parabola and intersects the parabola at two
points.

Figure 2
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How To: Given a system of equations
containing a line and a parabola, find the
solution.

1. Solve the linear equation for one of the
variables.

2. Substitute the expression obtained in step one
into the parabola equation.

3. Solve for the remaining variable.
4. Check your solutions in both equations.

Example 1: Solving a System of
Nonlinear Equations Representing a
Parabola and a Line

Solve the system of equations.
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Solution

Solve the first equation for and then substitute the
resulting expression into the second equation.

Expand the equation and set it equal to zero.

Solving for gives and . Next,
substitute each value for into the first equation to
solve for . Always substitute the value into the linear
equation to check for extraneous solutions.
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The solutions are and which can be

verified by substituting these values into both of

the original equations.

Figure 3

Solving a System of Nonlinear Equations Using Substitution | 1671



Q & A

Could we have substituted values for
into the second equation to solve for in
Example 1?

Yes, but because is squared in the second equation
this could give us extraneous solutions for .

For

This gives us the same value as in the solution.

For

Notice that is an extraneous solution.
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Try It 1

Solve the given system of equations by substitution.

Solution

Intersection of a Circle and a Line

Just as with a parabola and a line, there are three possible outcomes
when solving a system of equations representing a circle and a line.

A General Note: Possible Types of
Solutions for the Points of Intersection of
a Circle and a Line

Figure 4 illustrates possible solution sets for a system
of equations involving a circle and a line.

• No solution. The line does not intersect the
circle.

• One solution. The line is tangent to the circle
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and intersects the circle at exactly one point.
• Two solutions. The line crosses the circle and

intersects it at two points.

Figure 4

How To: Given a system of equations
containing a line and a circle, find the
solution.

1. Solve the linear equation for one of the
variables.

2. Substitute the expression obtained in step one
into the equation for the circle.

3. Solve for the remaining variable.
4. Check your solutions in both equations.
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Example 2: Finding the Intersection of a
Circle and a Line by Substitution

Find the intersection of the given circle and the given
line by substitution.

Solution

One of the equations has already been solved for .
We will substitute into the equation for
the circle.

Now, we factor and solve for .
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Substitute the two x-values into the original linear
equation to solve for .

The line intersects the circle at and ,

which can be verified by substituting these

values into both of the original equations.
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Figure 5

Try It 2

Solve the system of nonlinear equations.

Solution
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229. Solving a System of
Nonlinear Equations Using
Elimination

We have seen that substitution is often the preferred method when
a system of equations includes a linear equation and a nonlinear
equation. However, when both equations in the system have like
variables of the second degree, solving them using elimination by
addition is often easier than substitution. Generally, elimination is a
far simpler method when the system involves only two equations in
two variables (a two-by-two system), rather than a three-by-three
system, as there are fewer steps. As an example, we will investigate
the possible types of solutions when solving a system of equations
representing a circle and an ellipse.

A General Note: Possible Types of
Solutions for the Points of Intersection of
a Circle and an Ellipse

Figure 6 illustrates possible solution sets for a system
of equations involving a circle and an ellipse.

• No solution. The circle and ellipse do not
intersect. One shape is inside the other or the
circle and the ellipse are a distance away from the
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other.
• One solution. The circle and ellipse are tangent

to each other, and intersect at exactly one point.
• Two solutions. The circle and the ellipse

intersect at two points.
• Three solutions. The circle and the ellipse

intersect at three points.
• Four solutions. The circle and the ellipse

intersect at four points.

Figure 6

Example 3: Solving a System of
Nonlinear Equations Representing a
Circle and an Ellipse

Solve the system of nonlinear equations.
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Solution

Let’s begin by multiplying equation (1) by and
adding it to equation (2).

After we add the two equations together, we solve for
.

Substitute into one of the equations and
solve for .
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There are four solutions:
.

Figure 7
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Try It 3

Find the solution set for the given system of nonlinear
equations.

Solution
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230. Graphing Nonlinear
Inequalities and Systems of
Nonlinear Inequalities

All of the equations in the systems that we have encountered so
far have involved equalities, but we may also encounter systems
that involve inequalities. We have already learned to graph linear
inequalities by graphing the corresponding equation, and then
shading the region represented by the inequality symbol. Now, we
will follow similar steps to graph a nonlinear inequality so that we
can learn to solve systems of nonlinear inequalities. A nonlinear
inequality is an inequality containing a nonlinear expression.
Graphing a nonlinear inequality is much like graphing a linear
inequality.

Recall that when the inequality is greater than, a"
title="y>a" class="latex mathjax">, or less than, the graph
is drawn with a dashed line. When the inequality is greater than or
equal to, or less than or equal to, the graph is
drawn with a solid line. The graphs will create regions in the plane,
and we will test each region for a solution. If one point in the region
works, the whole region works. That is the region we shade.

Graphing Nonlinear Inequalities and
Systems of Nonlinear



Figure 8. (a) an example of [latex]y>a[/latex]; (b) an example of [latex]y\ge
a[/latex]; (c) an example of [latex]y<a[/latex]; (d) an example of [latex]y\le
a[/latex]

How To: Given an inequality bounded
by a parabola, sketch a graph.

1. Graph the parabola as if it were an equation.
This is the boundary for the region that is the
solution set.

2. If the boundary is included in the region (the
operator is or ), the parabola is graphed as a
solid line.

3. If the boundary is not included in the region
(the operator is < or >), the parabola is graphed as
a dashed line.

4. Test a point in one of the regions to determine
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whether it satisfies the inequality statement. If the
statement is true, the solution set is the region
including the point. If the statement is false, the
solution set is the region on the other side of the
boundary line.

5. Shade the region representing the solution set.

Example 4: Graphing an Inequality for a
Parabola

Graph the inequality {x}^{2}+1"
title="y>{x}^{2}+1" class="latex mathjax">.

Solution

First, graph the corresponding equation

. Since {x}^{2}+1"
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title="y>{x}^{2}+1" class="latex mathjax"> has a greater
than symbol, we draw the graph with a dashed line.
Then we choose points to test both inside and outside
the parabola. Let’s test the points and .

One point is clearly inside the parabola and the other
point is clearly outside.

{x}^{2}+1\hfill & \hfill
\\ 2>{\left(0\right)}^{2}+1\hfill & \hfill \\ 2>1\hfill &
\text{True}\hfill \\ \hfill & \hfill \\ \hfill & \hfill \\
\hfill & \hfill \\ 0>{\left(2\right)}^{2}+1\hfill & \hfill

\\ 0>5\hfill & \text{False}\hfill \end{array}"
title="\begin{array}{ll}y>{x}^{2}+1\hfill & \hfill \\

2>{\left(0\right)}^{2}+1\hfill & \hfill \\ 2>1\hfill &
\text{True}\hfill \\ \hfill & \hfill \\ \hfill & \hfill \\
\hfill & \hfill \\ 0>{\left(2\right)}^{2}+1\hfill & \hfill

\\ 0>5\hfill & \text{False}\hfill \end{array}"
class="latex mathjax">

The graph is shown in Figure 9. We can see that the
solution set consists of all points inside the parabola,
but not on the graph itself.
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Figure 9

Graphing a System of Nonlinear Inequalities

Now that we have learned to graph nonlinear inequalities, we can
learn how to graph systems of nonlinear inequalities. A system of
nonlinear inequalities is a system of two or more inequalities in two
or more variables containing at least one inequality that is not linear.
Graphing a system of nonlinear inequalities is similar to graphing a
system of linear inequalities. The difference is that our graph may
result in more shaded regions that represent a solution than we
find in a system of linear inequalities. The solution to a nonlinear
system of inequalities is the region of the graph where the shaded
regions of the graph of each inequality overlap, or where the regions
intersect, called the feasible region.
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How To: Given a system of nonlinear
inequalities, sketch a graph.

1. Find the intersection points by solving the
corresponding system of nonlinear equations.

2. Graph the nonlinear equations.
3. Find the shaded regions of each inequality.
4. Identify the feasible region as the intersection

of the shaded regions of each inequality or the set
of points common to each inequality.

Example 5: Graphing a System of
Inequalities

Graph the given system of inequalities.
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Solution

These two equations are clearly parabolas. We can
find the points of intersection by the elimination
process: Add both equations and the variable will be
eliminated. Then we solve for .

Substitute the x-values into one of the equations and
solve for .
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The two points of intersection are and

. Notice that the equations can be rewritten as

follows.

Graph each inequality. The feasible region is the
region between the two equations bounded by

on the top and on the

bottom.
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Figure 10

Try It 4

Graph the given system of inequalities.

Solution
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231. Key Concepts & Glossary

Key Concepts

• There are three possible types of solutions to a system of
equations representing a line and a parabola: (1) no solution,
the line does not intersect the parabola; (2) one solution, the
line is tangent to the parabola; and (3) two solutions, the line
intersects the parabola in two points.

• There are three possible types of solutions to a system of
equations representing a circle and a line: (1) no solution, the
line does not intersect the circle; (2) one solution, the line is
tangent to the parabola; (3) two solutions, the line intersects
the circle in two points.

• There are five possible types of solutions to the system of
nonlinear equations representing an ellipse and a circle:
(1) no solution, the circle and the ellipse do not intersect; (2)
one solution, the circle and the ellipse are tangent to each
other; (3) two solutions, the circle and the ellipse intersect in
two points; (4) three solutions, the circle and ellipse intersect
in three places; (5) four solutions, the circle and the ellipse
intersect in four points.

• An inequality is graphed in much the same way as an equation,
except for > or <, we draw a dashed line and shade the region
containing the solution set.

• Inequalities are solved the same way as equalities, but
solutions to systems of inequalities must satisfy both
inequalities.
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Glossary

feasible region
the solution to a system of nonlinear inequalities that is the
region of the graph where the shaded regions of each
inequality intersect

nonlinear inequality
an inequality containing a nonlinear expression

system of nonlinear equations
a system of equations containing at least one equation that is
of degree larger than one

system of nonlinear inequalities
a system of two or more inequalities in two or more variables
containing at least one inequality that is not linear
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232. Section Exercises

1. Explain whether a system of two nonlinear equations can have
exactly two solutions. What about exactly three? If not, explain why
not. If so, give an example of such a system, in graph form, and
explain why your choice gives two or three answers.

2. When graphing an inequality, explain why we only need to test
one point to determine whether an entire region is the solution?

3. When you graph a system of inequalities, will there always be a
feasible region? If so, explain why. If not, give an example of a graph
of inequalities that does not have a feasible region. Why does it not
have a feasible region?

4. If you graph a revenue and cost function, explain how to
determine in what regions there is profit.

5. If you perform your break-even analysis and there is more than
one solution, explain how you would determine which x-values are
profit and which are not.

For the following exercises, solve the system of nonlinear
equations using substitution.

6.

7.

8.

9.

10.
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For the following exercises, solve the system of nonlinear
equations using elimination.

11.

12.

13.

14.

15.

For the following exercises, use any method to solve the system of
nonlinear equations.

16.

17.

18.

19.
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20.

21.

22.

23.

For the following exercises, use any method to solve the nonlinear
system.

24.

25.

26.

27.

28.

29.

30.
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31.

32.

33.

34.

35.

36.

37.

38.

For the following exercises, graph the inequality.
39.

40.

For the following exercises, graph the system of inequalities.
Label all points of intersection.

41.

42.

43.
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44.

45.

For the following exercises, graph the inequality.

46.

47.

For the following exercises, find the solutions to the nonlinear
equations with two variables.

48.

49.

50.

51.

52.

For the following exercises, solve the system of inequalities. Use a
calculator to graph the system to confirm the answer.

53.
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54.

For the following exercises, construct a system of nonlinear
equations to describe the given behavior, then solve for the
requested solutions.

55. Two numbers add up to 300. One number is twice the square
of the other number. What are the numbers?

56. The squares of two numbers add to 360. The second number
is half the value of the first number squared. What are the numbers?

57. A laptop company has discovered their cost and revenue
functions for each day: and

. If they want to make a profit,

what is the range of laptops per day that they should produce?
Round to the nearest number which would generate profit.

58. A cell phone company has the following cost and revenue
functions: and

. What is the range of cell phones

they should produce each day so there is profit? Round to the
nearest number that generates profit.
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PART XXXIII

MATRICES AND MATRIX
OPERATIONS
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233. Introduction: Matrices
and Matrix Operations

Learning Objectives

By the end of this section, you will be able to:

• Find the sum and difference of two matrices.
• Find scalar multiples of a matrix.
• Find the product of two matrices.
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Figure 1. (credit: “SD Dirk,” Flickr)

Two club soccer teams, the Wildcats and the Mud Cats, are hoping
to obtain new equipment for an upcoming season. [link] shows the
needs of both teams.

Wildcats Mud Cats

Goals 6 10

Balls 30 24

Jerseys 14 20

A goal costs $300; a ball costs $10; and a jersey costs $30. How can
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we find the total cost for the equipment needed for each team?
In this section, we discover a method in which the data in the
soccer equipment table can be displayed and used for calculating
other information. Then, we will be able to calculate the cost of the
equipment.
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234. Finding the Sum and
Difference of Two Matrices

To solve a problem like the one described for the soccer teams, we
can use a matrix, which is a rectangular array of numbers. A row in
a matrix is a set of numbers that are aligned horizontally. A column
in a matrix is a set of numbers that are aligned vertically. Each
number is an entry, sometimes called an element, of the matrix.
Matrices (plural) are enclosed in [ ] or ( ), and are usually named with
capital letters. For example, three matrices named and
are shown below.

Describing Matrices

A matrix is often referred to by its size or dimensions:
indicating rows and columns. Matrix entries are defined first
by row and then by column. For example, to locate the entry in
matrix identified as we look for the entry in row column

. In matrix shown below, the entry in

row 2, column 3 is .

A square matrix is a matrix with dimensions meaning
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that it has the same number of rows as columns. The matrix
above is an example of a square matrix.

A row matrix is a matrix consisting of one row with dimensions
.

A column matrix is a matrix consisting of one column with
dimensions .

A matrix may be used to represent a system of equations. In these
cases, the numbers represent the coefficients of the variables in
the system. Matrices often make solving systems of equations easier
because they are not encumbered with variables. We will investigate
this idea further in the next section, but first we will look at basic
matrix operations.

A General Note: Matrices

A matrix is a rectangular array of numbers that is
usually named by a capital letter: and so on.
Each entry in a matrix is referred to as , such that
represents the row and represents the column.
Matrices are often referred to by their dimensions:

indicating rows and columns.
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Example 1: Finding the Dimensions of
the Given Matrix and Locating Entries

Given matrix

1. What are the dimensions of matrix
2. What are the entries at and

Solution

1. The dimensions are because there
are three rows and three columns.

2. Entry is the number at row 3, column 1,
which is 3. The entry is the number at row 2,
column 2, which is 4. Remember, the row comes
first, then the column.
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Adding and Subtracting Matrices

We use matrices to list data or to represent systems. Because the
entries are numbers, we can perform operations on matrices. We
add or subtract matrices by adding or subtracting corresponding
entries.

In order to do this, the entries must correspond. Therefore,
addition and subtraction of matrices is only possible when the
matrices have the same dimensions. We can add or subtract a

matrix and another matrix, but we cannot
add or subtract a matrix and a matrix because
some entries in one matrix will not have a corresponding entry in
the other matrix.

A General Note: Adding and
Subtracting Matrices

Given matrices and of like dimensions, addition
and subtraction of and will produce matrix
or matrix of the same dimension.

Matrix addition is commutative.

It is also associative.
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Example 2: Finding the Sum of Matrices

Find the sum of and given

Solution

Add corresponding entries.
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Example 3: Adding Matrix A and Matrix
<>B

Find the sum of and .

Solution

Add corresponding entries. Add the entry in row 1,
column 1, of matrix to the entry in row 1,
column 1, , of . Continue the pattern until all
entries have been added.
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Example 4: Finding the Difference of
Two Matrices

Find the difference of and .

Solution

We subtract the corresponding entries of each matrix.
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Example 5: Finding the Sum and
Difference of Two 3 x 3 Matrices

Given and

1. Find the sum.
2. Find the difference.

Solution

1. Add the corresponding entries.
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2. Subtract the corresponding entries.

Try It 1

Add matrix and matrix .
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Solution
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235. Finding Scalar Multiples
of a Matrix

Besides adding and subtracting whole matrices, there are many
situations in which we need to multiply a matrix by a constant called
a scalar. Recall that a scalar is a real number quantity that has
magnitude, but not direction. For example, time, temperature, and
distance are scalar quantities. The process of scalar multiplication
involves multiplying each entry in a matrix by a scalar. A scalar
multiple is any entry of a matrix that results from scalar
multiplication.

Consider a real-world scenario in which a university needs to add
to its inventory of computers, computer tables, and chairs in two
of the campus labs due to increased enrollment. They estimate that
15% more equipment is needed in both labs. The school’s current
inventory is displayed in the table below.

Lab A Lab B

Computers 15 27

Computer Tables 16 34

Chairs 16 34

Converting the data to a matrix, we have

To calculate how much computer equipment will be needed, we
multiply all entries in matrix by 0.15.
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We must round up to the next integer, so the amount of new
equipment needed is

Adding the two matrices as shown below, we see the new inventory
amounts.

This means

Thus, Lab A will have 18 computers, 19 computer tables, and 19
chairs; Lab B will have 32 computers, 40 computer tables, and 40
chairs.
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A General Note: Scalar Multiplication

Scalar multiplication involves finding the product of a
constant by each entry in the matrix. Given

the scalar multiple is

Scalar multiplication is distributive. For the matrices
, and with scalars and ,

Example 6: Multiplying the Matrix by a
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Scalar

Multiply matrix by the scalar 3.

Solution

Multiply each entry in by the scalar 3.
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Try It 2

Given matrix find where

Solution

Example 7: Finding the Sum of Scalar
Multiples

Find the sum .
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Solution

First, find then .

Now, add .
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236. Finding the Product of
Two Matrices

In addition to multiplying a matrix by a scalar, we can multiply two
matrices. Finding the product of two matrices is only possible when
the inner dimensions are the same, meaning that the number of
columns of the first matrix is equal to the number of rows of the
second matrix. If is an matrix and is an
matrix, then the product matrix is an matrix.
For example, the product is possible because the number of
columns in is the same as the number of rows in . If the inner
dimensions do not match, the product is not defined.

Figure 1

We multiply entries of with entries of according to a specific
pattern as outlined below. The process of matrix multiplication
becomes clearer when working a problem with real numbers.

To obtain the entries in row of we multiply the entries
in row of by column in and add. For example, given
matrices and where the dimensions of are and
the dimensions of are the product of will be a

matrix.
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Multiply and add as follows to obtain the first entry of the product
matrix .

1. To obtain the entry in row 1, column 1 of multiply the
first row in by the first column in , and add.

2. To obtain the entry in row 1, column 2 of multiply the
first row of by the second column in , and add.

3. To obtain the entry in row 1, column 3 of multiply the
first row of by the third column in , and add.

We proceed the same way to obtain the second row of . In
other words, row 2 of times column 1 of ; row 2 of times
column 2 of ; row 2 of times column 3 of . When complete,
the product matrix will be
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A General Note: Properties of Matrix
Multiplication

For the matrices and the following
properties hold.

• Matrix multiplication is associative:
.

• Matrix multiplication is distributive:

Note that matrix multiplication is not commutative.

Example 8: Multiplying Two Matrices

Multiply matrix and matrix .
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Solution

First, we check the dimensions of the matrices. Matrix
has dimensions and matrix has

dimensions . The inner dimensions are the same
so we can perform the multiplication. The product will
have the dimensions .

We perform the operations outlined previously.

Figure 2
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Example 9: Multiplying Two Matrices

Given and

1. Find .
2. Find .

Solution

1. As the dimensions of are and the
dimensions of are these matrices can
be multiplied together because the number of
columns in matches the number of rows in .
The resulting product will be a matrix, the
number of rows in by the number of columns
in .

Finding the Product of Two Matrices | 1727



2. The dimensions of are and the
dimensions of are . The inner
dimensions match so the product is defined and
will be a matrix.

Analysis of the Solution

Notice that the products and are not equal.
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This illustrates the fact that matrix multiplication is not
commutative.

Q & A

Is it possible for AB to be defined but
not BA?

Yes, consider a matrix A with dimension and
matrix B with dimension . For the product AB the
inner dimensions are 4 and the product is defined, but for
the product BA the inner dimensions are 2 and 3 so the
product is undefined.

Example 10: Using Matrices in
Real-World Problems

Let’s return to the problem presented at the opening
of this section. We have the table below, representing
the equipment needs of two soccer teams.
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Wildcats Mud Cats

Goals 6 10

Balls 30 24

Jerseys 14 20

We are also given the prices of the equipment, as
shown in the table below.

Goal $300

Ball $10

Jersey $30

We will convert the data to matrices. Thus, the
equipment need matrix is written as

The cost matrix is written as

We perform matrix multiplication to obtain costs for
the equipment.

The total cost for equipment for the Wildcats is
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$2,520, and the total cost for equipment for the Mud
Cats is $3,840.

How To: Given a matrix operation,
evaluate using a calculator.

1. Save each matrix as a matrix variable
.

2. Enter the operation into the calculator, calling
up each matrix variable as needed.

3. If the operation is defined, the calculator will
present the solution matrix; if the operation is
undefined, it will display an error message.

Example 11: Using a Calculator to
Perform Matrix Operations

Find given
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.

Solution

On the matrix page of the calculator, we enter matrix
above as the matrix variable , matrix above as

the matrix variable , and matrix above as the

matrix variable .

On the home screen of the calculator, we type in the
problem and call up each matrix variable as needed.

The calculator gives us the following matrix.
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237. Key Concepts & Glossary

Key Concepts

• A matrix is a rectangular array of numbers. Entries are
arranged in rows and columns.

• The dimensions of a matrix refer to the number of rows and
the number of columns. A matrix has three rows and
two columns.

• We add and subtract matrices of equal dimensions by adding
and subtracting corresponding entries of each matrix.

• Scalar multiplication involves multiplying each entry in a
matrix by a constant.

• Scalar multiplication is often required before addition or
subtraction can occur.

• Multiplying matrices is possible when inner dimensions are the
same—the number of columns in the first matrix must match
the number of rows in the second.

• The product of two matrices, and , is obtained by
multiplying each entry in row 1 of by each entry in column 1
of ; then multiply each entry of row 1 of by each entry in
columns 2 of and so on.

• Many real-world problems can often be solved using matrices.
• We can use a calculator to perform matrix operations after

saving each matrix as a matrix variable.

Glossary

column
a set of numbers aligned vertically in a matrix
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entry
an element, coefficient, or constant in a matrix

matrix
a rectangular array of numbers

row
a set of numbers aligned horizontally in a matrix

scalar multiple
an entry of a matrix that has been multiplied by a scalar
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238. Section Exercises

1. Can we add any two matrices together? If so, explain why; if not,
explain why not and give an example of two matrices that cannot be
added together.

2. Can we multiply any column matrix by any row matrix? Explain
why or why not.

3. Can both the products and be defined? If so, explain
how; if not, explain why.

4. Can any two matrices of the same size be multiplied? If so,
explain why, and if not, explain why not and give an example of two
matrices of the same size that cannot be multiplied together.

5. Does matrix multiplication commute? That is, does
If so, prove why it does. If not, explain why it does

not.
For the following exercises, use the matrices below and perform

the matrix addition or subtraction. Indicate if the operation is
undefined.

6.
7.
8.
9.
10.
11.
For the following exercises, use the matrices below to perform

scalar multiplication.

12.
13.
14.
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15.

16.

17.
For the following exercises, use the matrices below to perform

matrix multiplication.

18.
19.
20.
21.
22.
23.
For the following exercises, use the matrices below to perform

the indicated operation if possible. If not possible, explain why the
operation cannot be performed.

24.
25.
26.
27.
28.
29.
For the following exercises, use the matrices below to perform

the indicated operation if possible. If not possible, explain why the
operation cannot be performed. (Hint: )

30.
31.
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32.
33.
34.
35.
36.

37.
38.

39.

40.

For the following exercises, use the matrices below to perform
the indicated operation if possible. If not possible, explain why the
operation cannot be performed. (Hint: )

41.
42.
43.
44.
45.
46.
47.

48.

49.

For the following exercises, use the matrices below to perform
the indicated operation if possible. If not possible, explain why the
operation cannot be performed. Use a calculator to verify your
solution.

50.
51.
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52.
53.
54.
For the following exercises, use the matrix below to perform the

indicated operation on the given matrix.

55.
56.
57.
58.
59. Using the above questions, find a formula for . Test the

formula for and using a calculator.
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PART XXXIV

SOLVING SYSTEMS WITH
GAUSSIAN ELIMINATION
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239. Introduction to Solving
Systems with Gaussian
Elimination

Learning Objectives

By the end of this section, you will be able to:

• Write the augmented matrix of a system of
equations.

• Write the system of equations from an augmented
matrix.

• Perform row operations on a matrix.
• Solve a system of linear equations using matrices.

Introduction to Solving Systems with
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Figure 1. German mathematician Carl Friedrich Gauss (1777–1855).

Carl Friedrich Gauss lived during the late 18th century and early
19th century, but he is still considered one of the most prolific
mathematicians in history. His contributions to the science of
mathematics and physics span fields such as algebra, number
theory, analysis, differential geometry, astronomy, and optics,
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among others. His discoveries regarding matrix theory changed the
way mathematicians have worked for the last two centuries.

We first encountered Gaussian elimination in Systems of Linear
Equations: Two Variables. In this section, we will revisit this
technique for solving systems, this time using matrices.
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240. The Augmented Matrix
of a System of Equations

A matrix can serve as a device for representing and solving a system
of equations. To express a system in matrix form, we extract the
coefficients of the variables and the constants, and these become
the entries of the matrix. We use a vertical line to separate the
coefficient entries from the constants, essentially replacing the
equal signs. When a system is written in this form, we call it an
augmented matrix.

For example, consider the following system of equations.

We can write this system as an augmented matrix:

We can also write a matrix containing just the coefficients. This is
called the coefficient matrix.

A three-by-three system of equations such as

has a coefficient matrix
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and is represented by the augmented matrix

Notice that the matrix is written so that the variables line up in their
own columns: x-terms go in the first column, y-terms in the second
column, and z-terms in the third column. It is very important that
each equation is written in standard form
so that the variables line up. When there is a missing variable term
in an equation, the coefficient is 0.

How To: Given a system of equations,
write an augmented matrix.

1. Write the coefficients of the x-terms as the
numbers down the first column.

2. Write the coefficients of the y-terms as the
numbers down the second column.

3. If there are z-terms, write the coefficients as
the numbers down the third column.

4. Draw a vertical line and write the constants to
the right of the line.
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Example 1: Writing the Augmented
Matrix for a System of Equations

Write the augmented matrix for the given system of
equations.

Solution

The augmented matrix displays the coefficients of the
variables, and an additional column for the constants.
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Try It 1

Write the augmented matrix of the given system of
equations.

Solution

Writing a System of Equations from an
Augmented Matrix

We can use augmented matrices to help us solve systems of
equations because they simplify operations when the systems are
not encumbered by the variables. However, it is important to
understand how to move back and forth between formats in order
to make finding solutions smoother and more intuitive. Here, we
will use the information in an augmented matrix to write the system
of equations in standard form.

Example 2: Writing a System of
Equations from an Augmented Matrix
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Form

Find the system of equations from the augmented
matrix.

Solution

When the columns represent the variables , , and
,
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Try It 2

Write the system of equations from the augmented
matrix.

Solution
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241. Performing Row
Operations on a Matrix

Now that we can write systems of equations in augmented matrix
form, we will examine the various row operations that can be
performed on a matrix, such as addition, multiplication by a
constant, and interchanging rows.

Performing row operations on a matrix is the method we use
for solving a system of equations. In order to solve the system of
equations, we want to convert the matrix to row-echelon form, in
which there are ones down the main diagonal from the upper left
corner to the lower right corner, and zeros in every position below
the main diagonal as shown.

We use row operations corresponding to equation operations to
obtain a new matrix that is row-equivalent in a simpler form. Here
are the guidelines to obtaining row-echelon form.

1. In any nonzero row, the first nonzero number is a 1. It is called
a leading 1.

2. Any all-zero rows are placed at the bottom on the matrix.
3. Any leading 1 is below and to the right of a previous leading 1.
4. Any column containing a leading 1 has zeros in all other

positions in the column.

To solve a system of equations we can perform the following row
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operations to convert the coefficient matrix to row-echelon form
and do back-substitution to find the solution.

1. Interchange rows. (Notation: )

2. Multiply a row by a constant. (Notation: )
3. Add the product of a row multiplied by a constant to another

row. (Notation: )

Each of the row operations corresponds to the operations we have
already learned to solve systems of equations in three variables.
With these operations, there are some key moves that will quickly
achieve the goal of writing a matrix in row-echelon form. To obtain
a matrix in row-echelon form for finding solutions, we use Gaussian
elimination, a method that uses row operations to obtain a 1 as the
first entry so that row 1 can be used to convert the remaining rows.

A General Note: Gaussian Elimination

The Gaussian elimination method refers to a strategy
used to obtain the row-echelon form of a matrix. The
goal is to write matrix with the number 1 as the entry
down the main diagonal and have all zeros below.

The first step of the Gaussian strategy includes
obtaining a 1 as the first entry, so that row 1 may be used
to alter the rows below.
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How To: Given an augmented matrix,
perform row operations to achieve
row-echelon form.

1. The first equation should have a leading
coefficient of 1. Interchange rows or multiply by a
constant, if necessary.

2. Use row operations to obtain zeros down the
first column below the first entry of 1.

3. Use row operations to obtain a 1 in row 2,
column 2.

4. Use row operations to obtain zeros down
column 2, below the entry of 1.

5. Use row operations to obtain a 1 in row 3,
column 3.

6. Continue this process for all rows until there is
a 1 in every entry down the main diagonal and
there are only zeros below.

7. If any rows contain all zeros, place them at the
bottom.
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Example 2: Solving a System by
Gaussian Elimination

Solve the given system by Gaussian elimination.

Solution

First, we write this as an augmented matrix.

We want a 1 in row 1, column 1. This can be
accomplished by interchanging row 1 and row 2.

We now have a 1 as the first entry in row 1, column 1.
Now let’s obtain a 0 in row 2, column 1. This can be
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accomplished by multiplying row 1 by , and then
adding the result to row 2.

We only have one more step, to multiply row 2 by .

Use back-substitution. The second row of the matrix
represents . Back-substitute into the
first equation.

The solution is the point .

Try It 3

Solve the given system by Gaussian elimination.

Solution
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Example 3: Using Gaussian Elimination
to Solve a System of Equations

Use Gaussian elimination to solve the given
system of equations.

Solution

Write the system as an augmented matrix.

Obtain a 1 in row 1, column 1. This can be

accomplished by multiplying the first row by .
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Next, we want a 0 in row 2, column 1. Multiply row 1
by and add row 1 to row 2.

The second row represents the equation .
Therefore, the system is inconsistent and has no
solution.

Example 4: Solving a Dependent System

Solve the system of equations.
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Solution

Perform row operations on the augmented matrix to
try and achieve row-echelon form.

The matrix ends up with all zeros in the last row:
. Thus, there are an infinite number of

solutions and the system is classified as dependent. To
find the generic solution, return to one of the original
equations and solve for .

So the solution to this system is .
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Example 5: Performing Row Operations
on a 3×3 Augmented Matrix to Obtain
Row-Echelon Form

Perform row operations on the given matrix to obtain
row-echelon form.

Solution

The first row already has a 1 in row 1, column 1. The
next step is to multiply row 1 by and add it to row 2.
Then replace row 2 with the result.

Next, obtain a zero in row 3, column 1.
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Next, obtain a zero in row 3, column 2.

The last step is to obtain a 1 in row 3, column 3.

Try It 4

Write the system of equations in row-echelon form.

Solution
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242. Solving a System of
Linear Equations Using
Matrices

We have seen how to write a system of equations with an
augmented matrix, and then how to use row operations and back-
substitution to obtain row-echelon form. Now, we will take row-
echelon form a step farther to solve a 3 by 3 system of linear
equations. The general idea is to eliminate all but one variable using
row operations and then back-substitute to solve for the other
variables.

Example 6: Solving a System of Linear
Equations Using Matrices

Solve the system of linear equations using matrices.
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Solution

First, we write the augmented matrix.

Next, we perform row operations to obtain row-
echelon form.

The easiest way to obtain a 1 in row 2 of column 1 is to
interchange and .

Then

The last matrix represents the equivalent system.

Using back-substitution, we obtain the solution as
.
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Example 7: Solving a Dependent System
of Linear Equations Using Matrices

Solve the following system of linear equations using
matrices.

Solution

Write the augmented matrix.

First, multiply row 1 by to get a 1 in row 1, column
1. Then, perform row operations to obtain row-echelon
form.
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The last matrix represents the following system.

We see by the identity that this is a
dependent system with an infinite number of solutions.
We then find the generic solution. By solving the second
equation for and substituting it into the first equation
we can solve for in terms of .
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Now we substitute the expression for into the
second equation to solve for in terms of .

The generic solution is .

Try It 5

Solve the system using matrices.

1764 | Solving a System of Linear Equations Using Matrices



Solution

Q & A

Can any system of linear equations be
solved by Gaussian elimination?

Yes, a system of linear equations of any size can be
solved by Gaussian elimination.

How To: Given a system of equations,
solve with matrices using a calculator.

1. Save the augmented matrix as a matrix variable
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.

2. Use the ref( function in the calculator, calling up
each matrix variable as needed.

Example 8: Solving Systems of
Equations with Matrices Using a
Calculator

Solve the system of equations.

Solution

Write the augmented matrix for the system of
equations.
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On the matrix page of the calculator, enter the
augmented matrix above as the matrix variable .

Use the ref( function in the calculator, calling up the
matrix variable .

Evaluate.

Using back-substitution, the solution is

.
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Example 9: Applying 2 × 2 Matrices to
Finance

Carolyn invests a total of $12,000 in two municipal
bonds, one paying 10.5% interest and the other paying
12% interest. The annual interest earned on the two
investments last year was $1,335. How much was
invested at each rate?

Solution

We have a system of two equations in two variables.
Let the amount invested at 10.5% interest, and

the amount invested at 12% interest.

As a matrix, we have
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Multiply row 1 by and add the result to row
2.

Then,

So .

Thus, $5,000 was invested at 12% interest and $7,000
at 10.5% interest.

Example 10: Applying 3 × 3 Matrices to
Finance

Ava invests a total of $10,000 in three accounts, one
paying 5% interest, another paying 8% interest, and the
third paying 9% interest. The annual interest earned on
the three investments last year was $770. The amount
invested at 9% was twice the amount invested at 5%.
How much was invested at each rate?
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Solution

We have a system of three equations in three
variables. Let be the amount invested at 5% interest,
let be the amount invested at 8% interest, and let be
the amount invested at 9% interest. Thus,

As a matrix, we have

Now, we perform Gaussian elimination to achieve
row-echelon form.
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The third row tells us ; thus

.

The second row tells us .

Substituting , we get

The first row tells us .
Substituting and , we get

The answer is $3,000 invested at 5% interest, $1,000
invested at 8%, and $6,000 invested at 9% interest.
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Try It 6

A small shoe company took out a loan of $1,500,000 to
expand their inventory. Part of the money was borrowed at
7%, part was borrowed at 8%, and part was borrowed at
10%. The amount borrowed at 10% was four times the
amount borrowed at 7%, and the annual interest on all
three loans was $130,500. Use matrices to find the amount
borrowed at each rate.

Solution
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243. Key Concepts & Glossary

Key Concepts

• An augmented matrix is one that contains the coefficients and
constants of a system of equations.

• A matrix augmented with the constant column can be
represented as the original system of equations.

• Row operations include multiplying a row by a constant,
adding one row to another row, and interchanging rows.

• We can use Gaussian elimination to solve a system of
equations.

• Row operations are performed on matrices to obtain row-
echelon form.

• To solve a system of equations, write it in augmented matrix
form. Perform row operations to obtain row-echelon form.
Back-substitute to find the solutions.

• A calculator can be used to solve systems of equations using
matrices.

• Many real-world problems can be solved using augmented
matrices.

Glossary

augmented matrix
a coefficient matrix adjoined with the constant column
separated by a vertical line within the matrix brackets

coefficient matrix
a matrix that contains only the coefficients from a system of
equations
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Gaussian elimination
using elementary row operations to obtain a matrix in row-
echelon form

main diagonal
entries from the upper left corner diagonally to the lower right
corner of a square matrix

row-echelon form
after performing row operations, the matrix form that contains
ones down the main diagonal and zeros at every space below
the diagonal

row-equivalent
two matrices and are row-equivalent if one can be
obtained from the other by performing basic row operations

row operations
adding one row to another row, multiplying a row by a
constant, interchanging rows, and so on, with the goal of
achieving row-echelon form
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244. Section Exercises

1. Can any system of linear equations be written as an augmented
matrix? Explain why or why not. Explain how to write that
augmented matrix.

2. Can any matrix be written as a system of linear equations?
Explain why or why not. Explain how to write that system of
equations.

3. Is there only one correct method of using row operations on a
matrix? Try to explain two different row operations possible to solve

the augmented matrix .

4. Can a matrix whose entry is 0 on the diagonal be solved?
Explain why or why not. What would you do to remedy the
situation?

5. Can a matrix that has 0 entries for an entire row have one
solution? Explain why or why not.

For the following exercises, write the augmented matrix for the
linear system.

6.

7.

8.
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9.

10.

For the following exercises, write the linear system from the
augmented matrix.

11.

12.

13.

14.

15.

For the following exercises, solve the system by Gaussian
elimination.

16.
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17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
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30.

31.

32.

33.

34.

35.

36.

37.

38.
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39.

40.

41.

42.

43.

44.

45.

46.
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For the following exercises, use Gaussian elimination to solve the
system.

47.

48.

49.

50.

51.

For the following exercises, set up the augmented matrix that
describes the situation, and solve for the desired solution.

52. Every day, a cupcake store sells 5,000 cupcakes in chocolate
and vanilla flavors. If the chocolate flavor is 3 times as popular as the
vanilla flavor, how many of each cupcake sell per day?

53. At a competing cupcake store, $4,520 worth of cupcakes are
sold daily. The chocolate cupcakes cost $2.25 and the red velvet
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cupcakes cost $1.75. If the total number of cupcakes sold per day is
2,200, how many of each flavor are sold each day?

54. You invested $10,000 into two accounts: one that has simple
3% interest, the other with 2.5% interest. If your total interest
payment after one year was $283.50, how much was in each account
after the year passed?

55. You invested $2,300 into account 1, and $2,700 into account 2.
If the total amount of interest after one year is $254, and account
2 has 1.5 times the interest rate of account 1, what are the interest
rates? Assume simple interest rates.

56. Bikes’R’Us manufactures bikes, which sell for $250. It costs the
manufacturer $180 per bike, plus a startup fee of $3,500. After how
many bikes sold will the manufacturer break even?

57. A major appliance store is considering purchasing vacuums
from a small manufacturer. The store would be able to purchase the
vacuums for $86 each, with a delivery fee of $9,200, regardless of
how many vacuums are sold. If the store needs to start seeing a
profit after 230 units are sold, how much should they charge for the
vacuums?

58. The three most popular ice cream flavors are chocolate,
strawberry, and vanilla, comprising 83% of the flavors sold at an
ice cream shop. If vanilla sells 1% more than twice strawberry, and
chocolate sells 11% more than vanilla, how much of the total ice
cream consumption are the vanilla, chocolate, and strawberry
flavors?

59. At an ice cream shop, three flavors are increasing in demand.
Last year, banana, pumpkin, and rocky road ice cream made up
12% of total ice cream sales. This year, the same three ice creams
made up 16.9% of ice cream sales. The rocky road sales doubled, the
banana sales increased by 50%, and the pumpkin sales increased by
20%. If the rocky road ice cream had one less percent of sales than
the banana ice cream, find out the percentage of ice cream sales
each individual ice cream made last year.

60. A bag of mixed nuts contains cashews, pistachios, and
almonds. There are 1,000 total nuts in the bag, and there are 100 less
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almonds than pistachios. The cashews weigh 3 g, pistachios weigh
4 g, and almonds weigh 5 g. If the bag weighs 3.7 kg, find out how
many of each type of nut is in the bag.

61. A bag of mixed nuts contains cashews, pistachios, and
almonds. Originally there were 900 nuts in the bag. 30% of the
almonds, 20% of the cashews, and 10% of the pistachios were eaten,
and now there are 770 nuts left in the bag. Originally, there were 100
more cashews than almonds. Figure out how many of each type of
nut was in the bag to begin with.
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PART XXXV

SOLVING SYSTEMS WITH
INVERSES

Solving Systems with Inverses | 1783





245. Introduction to Solving
Systems with Inverses

Learning Objectives

By the end of this section, you will be able to:

• Find the inverse of a matrix.
• Solve a system of linear equations using an inverse

matrix.

Nancy plans to invest $10,500 into two different bonds to spread out
her risk. The first bond has an annual return of 10%, and the second
bond has an annual return of 6%. In order to receive an 8.5% return
from the two bonds, how much should Nancy invest in each bond?
What is the best method to solve this problem?

There are several ways we can solve this problem. As we have seen
in previous sections, systems of equations and matrices are useful
in solving real-world problems involving finance. After studying this
section, we will have the tools to solve the bond problem using the
inverse of a matrix.
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246. Finding the Inverse of a
Matrix

We know that the multiplicative inverse of a real number is

, and . For example,

and . The multiplicative inverse of a

matrix is similar in concept, except that the product of matrix
and its inverse equals the identity matrix. The identity matrix
is a square matrix containing ones down the main diagonal and
zeros everywhere else. We identify identity matrices by where

represents the dimension of the matrix. The equations below are
the identity matrices for a matrix and a matrix,
respectively.

The identity matrix acts as a 1 in matrix algebra. For example,
.

A matrix that has a multiplicative inverse has the properties

A matrix that has a multiplicative inverse is called an invertible
matrix. Only a square matrix may have a multiplicative inverse, as
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the reversibility, , is a requirement. Not
all square matrices have an inverse, but if is invertible, then
is unique. We will look at two methods for finding the inverse of a

matrix and a third method that can be used on both
and matrices.

A General Note: The Identity Matrix
and Multiplicative Inverse

The identity matrix, , is a square matrix containing
ones down the main diagonal and zeros everywhere
else.

If is an matrix and is an matrix
such that , then , the
multiplicative inverse of a matrix .
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Example 1: Showing That the Identity
Matrix Acts as a 1

Given matrix A, show that .

Solution

Use matrix multiplication to show that the product of
and the identity is equal to the product of the

identity and A.
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How To: Given two matrices, show that
one is the multiplicative inverse of the
other.

1. Given matrix of order and matrix
of order multiply .

2. If , then find the product . If
, then and .

Example 2: Showing That Matrix A Is
the Multiplicative Inverse of Matrix B

Show that the given matrices are multiplicative
inverses of each other.

Finding the Inverse of a Matrix | 1789



Solution

Multiply and . If both products equal the
identity, then the two matrices are inverses of each
other.

and are inverses of each other.
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Try It 1

Show that the following two matrices are inverses of each
other.

Solution

Finding the Multiplicative Inverse Using Matrix
Multiplication

We can now determine whether two matrices are inverses, but how
would we find the inverse of a given matrix? Since we know that
the product of a matrix and its inverse is the identity matrix, we can
find the inverse of a matrix by setting up an equation using matrix
multiplication.

Example 3: Finding the Multiplicative
Inverse Using Matrix Multiplication

Use matrix multiplication to find the inverse of the
given matrix.
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Solution

For this method, we multiply by a matrix
containing unknown constants and set it equal to the
identity.

Find the product of the two matrices on the left side
of the equal sign.

Next, set up a system of equations with the entry in
row 1, column 1 of the new matrix equal to the first entry
of the identity, 1. Set the entry in row 2, column 1 of the
new matrix equal to the corresponding entry of the
identity, which is 0.

Using row operations, multiply and add as follows:
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. Add the equations, and

solve for .

Back-substitute to solve for .

Write another system of equations setting the entry in
row 1, column 2 of the new matrix equal to the
corresponding entry of the identity, 0. Set the entry in
row 2, column 2 equal to the corresponding entry of the
identity.

Using row operations, multiply and add as follows:
. Add the two equations and

solve for .

Once more, back-substitute and solve for .
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Finding the Multiplicative Inverse by
Augmenting with the Identity

Another way to find the multiplicative inverse is by augmenting
with the identity. When matrix is transformed into , the
augmented matrix transforms into .

For example, given

augment with the identity

Perform row operations with the goal of turning into the
identity.

1. Switch row 1 and row 2.

2. Multiply row 2 by and add to row 1.

3. Multiply row 1 by and add to row 2.
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4. Add row 2 to row 1.

5. Multiply row 2 by .

The matrix we have found is .

Finding the Multiplicative Inverse of 2×2 Matrices
Using a Formula

When we need to find the multiplicative inverse of a
matrix, we can use a special formula instead of using matrix
multiplication or augmenting with the identity.

If is a matrix, such as

the multiplicative inverse of is given by the formula

where . If , then has no inverse.
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Example 4: Using the Formula to Find
the Multiplicative Inverse of Matrix A

Use the formula to find the multiplicative inverse of

Solution

Using the formula, we have
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Analysis of the Solution

We can check that our formula works by using one of the other
methods to calculate the inverse. Let’s augment with the identity.

Perform row operations with the goal of turning into the
identity.

1. Multiply row 1 by and add to row 2.

2. Multiply row 1 by 2 and add to row 1.

So, we have verified our original solution.

Try It 2

Use the formula to find the inverse of matrix . Verify
your answer by augmenting with the identity matrix.

Solution
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Example 5: Finding the Inverse of the
Matrix, If It Exists

Find the inverse, if it exists, of the given matrix.

Solution

We will use the method of augmenting with the
identity.

1. Switch row 1 and row 2.

2. Multiply row 1 by −3 and add it to row 2.
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3. There is nothing further we can do. The zeros in
row 2 indicate that this matrix has no inverse.

Finding the Multiplicative Inverse of 3×3 Matrices

Unfortunately, we do not have a formula similar to the one for a
matrix to find the inverse of a matrix. Instead, we

will augment the original matrix with the identity matrix and use
row operations to obtain the inverse.

Given a matrix

augment with the identity matrix

To begin, we write the augmented matrix with the identity on the
right and on the left. Performing elementary row operations
so that the identity matrix appears on the left, we will obtain the
inverse matrix on the right. We will find the inverse of this matrix
in the next example.
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How To: Given a matrix, find the
inverse

1. Write the original matrix augmented with the
identity matrix on the right.

2. Use elementary row operations so that the
identity appears on the left.

3. What is obtained on the right is the inverse of
the original matrix.

4. Use matrix multiplication to show that
and .

Example 6: Finding the Inverse of a 3 × 3
Matrix

Given the matrix , find the inverse.
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Solution

Augment with the identity matrix, and then begin
row operations until the identity matrix replaces . The
matrix on the right will be the inverse of .

Thus,
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Analysis of the Solution

To prove that , let’s multiply the two matrices together
to see if the product equals the identity, if and

.
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Try It 3

Find the inverse of the matrix.

Solution
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247. Solving a System of
Linear Equations Using the
Inverse of a Matrix

Solving a system of linear equations using the inverse of a matrix
requires the definition of two new matrices: is the matrix
representing the variables of the system, and is the matrix
representing the constants. Using matrix multiplication, we may
define a system of equations with the same number of equations as
variables as

To solve a system of linear equations using an inverse matrix, let
be the coefficient matrix, let be the variable matrix, and

let be the constant matrix. Thus, we want to solve a system
. For example, look at the following system of equations.

From this system, the coefficient matrix is

The variable matrix is

And the constant matrix is
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Then looks like

Recall the discussion earlier in this section regarding multiplying a

real number by its inverse, . To solve

a single linear equation for , we would simply multiply
both sides of the equation by the multiplicative inverse (reciprocal)
of . Thus,

The only difference between a solving a linear equation and a
system of equations written in matrix form is that finding the
inverse of a matrix is more complicated, and matrix multiplication
is a longer process. However, the goal is the same—to isolate the
variable.

We will investigate this idea in detail, but it is helpful to begin with
a system and then move on to a system.
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A General Note: Solving a System of
Equations Using the Inverse of a Matrix

Given a system of equations, write the coefficient
matrix , the variable matrix , and the constant
matrix . Then

Multiply both sides by the inverse of to obtain the
solution.

Q & A

If the coefficient matrix does not have
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an inverse, does that mean the system has
no solution?

No, if the coefficient matrix is not invertible, the system
could be inconsistent and have no solution, or be
dependent and have infinitely many solutions.

Example 7: Solving a 2 × 2 System Using
the Inverse of a Matrix

Solve the given system of equations using the inverse
of a matrix.
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Solution

Write the system in terms of a coefficient matrix, a
variable matrix, and a constant matrix.

Then

First, we need to calculate . Using the formula to
calculate the inverse of a 2 by 2 matrix, we have:

So,

Now we are ready to solve. Multiply both sides of the
equation by .
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The solution is .

Q & A

Can we solve for by finding the
product

No, recall that matrix multiplication is not

commutative, so . Consider our

steps for solving the matrix equation.
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Notice in the first step we multiplied both sides of the
equation by , but the was to the left of on

the left side and to the left of on the right side. Because
matrix multiplication is not commutative, order matters.

Example 8: Solving a 3 × 3 System Using
the Inverse of a Matrix

Solve the following system using the inverse of a
matrix.
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Solution

Write the equation .

First, we will find the inverse of by augmenting
with the identity.

Multiply row 1 by .

Multiply row 1 by 4 and add to row 2.

Add row 1 to row 3.
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Multiply row 2 by −3 and add to row 1.

Multiply row 3 by 5.

Multiply row 3 by and add to row 1.

Multiply row 3 by and add to row 2.

So,
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Multiply both sides of the equation by . We want

Thus,

The solution is .

Try It 4

Solve the system using the inverse of the coefficient
matrix.

Solution
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How To: Given a system of equations,
solve with matrix inverses using a
calculator.

1. Save the coefficient matrix and the constant
matrix as matrix variables and .

2. Enter the multiplication into the calculator,
calling up each matrix variable as needed.

3. If the coefficient matrix is invertible, the
calculator will present the solution matrix; if the
coefficient matrix is not invertible, the calculator
will present an error message.

Example 9: Using a Calculator to Solve a
System of Equations with Matrix Inverses

Solve the system of equations with matrix inverses
using a calculator
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Solution

On the matrix page of the calculator, enter the
coefficient matrix as the matrix variable , and enter

the constant matrix as the matrix variable .

On the home screen of the calculator, type in the
multiplication to solve for , calling up each matrix
variable as needed.

Evaluate the expression.
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248. Key Concepts & Glossary

Key Equations

Identity
matrix for a

matrix

Identity
matrix for a

matrix

Multiplicative
inverse of a

matrix

Key Concepts

• An identity matrix has the property .
• An invertible matrix has the property

.
• Use matrix multiplication and the identity to find the inverse of

a matrix.
• The multiplicative inverse can be found using a formula.
• Another method of finding the inverse is by augmenting with

the identity.
• We can augment a matrix with the identity on the right

and use row operations to turn the original matrix into the
identity, and the matrix on the right becomes the inverse.

• Write the system of equations as , and multiply
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both sides by the inverse of .
• We can also use a calculator to solve a system of equations

with matrix inverses.

Glossary

identity matrix
a square matrix containing ones down the main diagonal and
zeros everywhere else; it acts as a 1 in matrix algebra

multiplicative inverse of a matrix
a matrix that, when multiplied by the original, equals the
identity matrix
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249. Section Exercises

1. In a previous section, we showed that matrix multiplication is not
commutative, that is, in most cases. Can you explain
why matrix multiplication is commutative for matrix inverses, that
is,

2. Does every matrix have an inverse? Explain why or why
not. Explain what condition is necessary for an inverse to exist.

3. Can you explain whether a matrix with an entire row of
zeros can have an inverse?

4. Can a matrix with an entire column of zeros have an inverse?
Explain why or why not.

5. Can a matrix with zeros on the diagonal have an inverse? If
so, find an example. If not, prove why not. For simplicity, assume a

matrix.
In the following exercises, show that matrix is the inverse of

matrix .

6.

7.

8.

9.

10.
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11.

12.

For the following exercises, find the multiplicative inverse of each
matrix, if it exists.

13.

14.

15.

16.

17.

18.

19.

20.
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21.

22.

23.

24.

25.

26.

For the following exercises, solve the system using the inverse of
a matrix.

27.

28.

29.
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30.

31.

32.

33.

34.

For the following exercises, solve a system using the inverse of a

matrix.

35.

36.

37.

38.
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39.

40.

41.

42.

For the following exercises, use a calculator to solve the system of
equations with matrix inverses.

43.

44.

45.

46.

For the following exercises, find the inverse of the given matrix.
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47.

48.

49.

50.

51.

For the following exercises, write a system of equations that
represents the situation. Then, solve the system using the inverse of
a matrix.

52. 2,400 tickets were sold for a basketball game. If the prices for
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floor 1 and floor 2 were different, and the total amount of money
brought in is $64,000, how much was the price of each ticket?

53. In the previous exercise, if you were told there were 400 more
tickets sold for floor 2 than floor 1, how much was the price of each
ticket?

54. A food drive collected two different types of canned goods,
green beans and kidney beans. The total number of collected cans
was 350 and the total weight of all donated food was 348 lb, 12 oz. If
the green bean cans weigh 2 oz less than the kidney bean cans, how
many of each can was donated?

55. Students were asked to bring their favorite fruit to class. 95%
of the fruits consisted of banana, apple, and oranges. If oranges
were twice as popular as bananas, and apples were 5% less popular
than bananas, what are the percentages of each individual fruit?

56. A sorority held a bake sale to raise money and sold brownies
and chocolate chip cookies. They priced the brownies at $1 and
the chocolate chip cookies at $0.75. They raised $700 and sold 850
items. How many brownies and how many cookies were sold?

57. A clothing store needs to order new inventory. It has three
different types of hats for sale: straw hats, beanies, and cowboy
hats. The straw hat is priced at $13.99, the beanie at $7.99, and the
cowboy hat at $14.49. If 100 hats were sold this past quarter, $1,119
was taken in by sales, and the amount of beanies sold was 10 more
than cowboy hats, how many of each should the clothing store order
to replace those already sold?

58. Anna, Ashley, and Andrea weigh a combined 370 lb. If Andrea
weighs 20 lb more than Ashley, and Anna weighs 1.5 times as much
as Ashley, how much does each girl weigh?

59. Three roommates shared a package of 12 ice cream bars, but
no one remembers who ate how many. If Tom ate twice as many ice
cream bars as Joe, and Albert ate three less than Tom, how many ice
cream bars did each roommate eat?

60. A farmer constructed a chicken coop out of chicken wire,
wood, and plywood. The chicken wire cost $2 per square foot, the
wood $10 per square foot, and the plywood $5 per square foot. The
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farmer spent a total of $51, and the total amount of materials used
was . He used more chicken wire than plywood. How

much of each material in did the farmer use?
61. Jay has lemon, orange, and pomegranate trees in his backyard.

An orange weighs 8 oz, a lemon 5 oz, and a pomegranate 11 oz. Jay
picked 142 pieces of fruit weighing a total of 70 lb, 10 oz. He picked
15.5 times more oranges than pomegranates. How many of each fruit
did Jay pick?
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PART XXXVI

SOLVING SYSTEMS WITH
CRAMER'S RULE
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250. Introduction to Solving
Systems with Cramer's Rule

Learning Objectives

By the end of this section, you will be able to:

• Evaluate 2 × 2 determinants.
• Use Cramer’s Rule to solve a system of equations in

two variables.
• Evaluate 3 × 3 determinants.
• Use Cramer’s Rule to solve a system of three

equations in three variables.
• Know the properties of determinants.

We have learned how to solve systems of equations in two variables
and three variables, and by multiple methods: substitution, addition,
Gaussian elimination, using the inverse of a matrix, and graphing.
Some of these methods are easier to apply than others and are more
appropriate in certain situations. In this section, we will study two
more strategies for solving systems of equations.

Introduction to Solving Systems with
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251. Using Cramer’s Rule to
Solve a System of Two
Equations in Two Variables

Evaluating the Determinant of a 2×2 Matrix

A determinant is a real number that can be very useful in
mathematics because it has multiple applications, such as
calculating area, volume, and other quantities. Here, we will use
determinants to reveal whether a matrix is invertible by using the
entries of a square matrix to determine whether there is a solution
to the system of equations. Perhaps one of the more interesting
applications, however, is their use in cryptography. Secure signals
or messages are sometimes sent encoded in a matrix. The data can
only be decrypted with an invertible matrix and the determinant.
For our purposes, we focus on the determinant as an indication
of the invertibility of the matrix. Calculating the determinant of a
matrix involves following the specific patterns that are outlined in
this section.

A General Note: Find the Determinant
of a 2 × 2 Matrix

The determinant of a matrix, given

1830 | Using Cramer’s Rule to Solve a
System of Two Equations in Two



is defined as

Figure 1

Notice the change in notation. There are several ways
to indicate the determinant, including and

replacing the brackets in a matrix with straight lines,
.

Example 1: Finding the Determinant of a
2 × 2 Matrix

Find the determinant of the given matrix.
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Solution

Using Cramer’s Rule to Solve a System of Two
Equations in Two Variables

We will now introduce a final method for solving systems of
equations that uses determinants. Known as Cramer’s Rule, this
technique dates back to the middle of the 18th century and is named
for its innovator, the Swiss mathematician Gabriel Cramer
(1704–1752), who introduced it in 1750 in Introduction à l’Analyse des
lignes Courbes algébriques. Cramer’s Rule is a viable and efficient
method for finding solutions to systems with an arbitrary number
of unknowns, provided that we have the same number of equations
as unknowns.

Cramer’s Rule will give us the unique solution to a system of
equations, if it exists. However, if the system has no solution or an
infinite number of solutions, this will be indicated by a determinant
of zero. To find out if the system is inconsistent or dependent,
another method, such as elimination, will have to be used.

To understand Cramer’s Rule, let’s look closely at how we solve
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systems of linear equations using basic row operations. Consider a
system of two equations in two variables.

We eliminate one variable using row operations and solve for the
other. Say that we wish to solve for . If equation (2) is multiplied
by the opposite of the coefficient of in equation (1), equation (1)
is multiplied by the coefficient of in equation (2), and we add the
two equations, the variable will be eliminated.

Now, solve for .

Similarly, to solve for , we will eliminate .

Solving for gives
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Notice that the denominator for both and is the determinant of
the coefficient matrix.

We can use these formulas to solve for and , but Cramer’s Rule
also introduces new notation:

• determinant of the coefficient matrix
• determinant of the numerator in the solution of

• determinant of the numerator in the solution of

The key to Cramer’s Rule is replacing the variable column of interest
with the constant column and calculating the determinants. We can
then express and as a quotient of two determinants.
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A General Note: Cramer’s Rule for 2×2
Systems

Cramer’s Rule is a method that uses determinants to
solve systems of equations that have the same number
of equations as variables.

Consider a system of two linear equations in two
variables.

The solution using Cramer’s Rule is given as

.
If we are solving for , the column is replaced with

the constant column. If we are solving for , the
column is replaced with the constant column.
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Example 2: Using Cramer’s Rule to Solve
a 2 × 2 System

Solve the following system using Cramer’s
Rule.

Solution

Solve for .

Solve for .
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The solution is .

Try It 1

Use Cramer’s Rule to solve the 2 × 2 system of equations.

Solution
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252. Using Cramer’s Rule to
Solve a System of Three
Equations in Three Variables

Evaluating the Determinant of a 3 × 3 Matrix

Finding the determinant of a 2×2 matrix is straightforward, but
finding the determinant of a 3×3 matrix is more complicated. One
method is to augment the 3×3 matrix with a repetition of the first
two columns, giving a 3×5 matrix. Then we calculate the sum of
the products of entries down each of the three diagonals (upper
left to lower right), and subtract the products of entries up each of
the three diagonals (lower left to upper right). This is more easily
understood with a visual and an example.

Find the determinant of the 3×3 matrix.

1. Augment with the first two columns.

2. From upper left to lower right: Multiply the entries down the
first diagonal. Add the result to the product of entries down
the second diagonal. Add this result to the product of the
entries down the third diagonal.

3. From lower left to upper right: Subtract the product of entries
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up the first diagonal. From this result subtract the product of
entries up the second diagonal. From this result, subtract the
product of entries up the third diagonal.

Figure 2

The algebra is as follows:

Example 3: Finding the Determinant of
a 3 × 3 Matrix

Find the determinant of the 3 × 3 matrix given
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Solution

Augment the matrix with the first two columns and
then follow the formula. Thus,

Try It 2

Find the determinant of the 3 × 3 matrix.

Solution
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Q & A

Can we use the same method to find the
determinant of a larger matrix?

No, this method only works for and
matrices. For larger matrices it is best to use a graphing
utility or computer software.

Using Cramer’s Rule to Solve a System of Three
Equations in Three Variables

Now that we can find the determinant of a 3 × 3 matrix, we can
apply Cramer’s Rule to solve a system of three equations in three
variables. Cramer’s Rule is straightforward, following a pattern
consistent with Cramer’s Rule for 2 × 2 matrices. As the order of the
matrix increases to 3 × 3, however, there are many more calculations
required.

When we calculate the determinant to be zero, Cramer’s Rule
gives no indication as to whether the system has no solution or
an infinite number of solutions. To find out, we have to perform
elimination on the system.

Consider a 3 × 3 system of equations.
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Figure 3

where

Figure 4

If we are writing the determinant , we replace the column

with the constant column. If we are writing the determinant

, we replace the column with the constant column. If we are
writing the determinant , we replace the column with the
constant column. Always check the answer.

Example 4: Solving a 3 × 3 System Using
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Cramer’s Rule

Find the solution to the given 3 × 3 system using
Cramer’s Rule.

Solution

Use Cramer’s Rule.

Then,

The solution is .
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Try It 3

Use Cramer’s Rule to solve the 3 × 3 matrix.

Solution

Example 5: Using Cramer’s Rule to Solve
an Inconsistent System

Solve the system of equations using Cramer’s Rule.
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Solution

We begin by finding the determinants
.

We know that a determinant of zero means that either
the system has no solution or it has an infinite number
of solutions. To see which one, we use the process of
elimination. Our goal is to eliminate one of the variables.

1. Multiply equation (1) by .
2. Add the result to equation .

We obtain the equation , which is false.
Therefore, the system has no solution. Graphing the
system reveals two parallel lines.
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Figure 5

Example 6: Use Cramer’s Rule to Solve a
Dependent System

Solve the system with an infinite number of solutions.
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Solution

Let’s find the determinant first. Set up a matrix
augmented by the first two columns.

Then,

As the determinant equals zero, there is either no
solution or an infinite number of solutions. We have to
perform elimination to find out.

1. Multiply equation (1) by and add the result
to equation (3):
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2. Obtaining an answer of , a statement
that is always true, means that the system has an
infinite number of solutions. Graphing the system,
we can see that two of the planes are the same
and they both intersect the third plane on a line.

Figure 6
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253. Understanding Properties
of Determinants

There are many properties of determinants. Listed here are some
properties that may be helpful in calculating the determinant of a
matrix.

A General Note: Properties of
Determinants

1. If the matrix is in upper triangular form, the
determinant equals the product of entries down
the main diagonal.

2. When two rows are interchanged, the
determinant changes sign.

3. If either two rows or two columns are identical,
the determinant equals zero.

4. If a matrix contains either a row of zeros or a
column of zeros, the determinant equals zero.

5. The determinant of an inverse matrix is
the reciprocal of the determinant of the matrix .

6. If any row or column is multiplied by a constant,
the determinant is multiplied by the same factor.

Understanding Properties of
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Example 7: Illustrating Properties of
Determinants

Illustrate each of the properties of determinants.

Solution

Property 1 states that if the matrix is in upper
triangular form, the determinant is the product of the
entries down the main diagonal.

Augment with the first two columns.

Then
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Property 2 states that interchanging rows changes the
sign. Given

Property 3 states that if two rows or two columns are
identical, the determinant equals zero.

Property 4 states that if a row or column equals zero,
the determinant equals zero. Thus,

Property 5 states that the determinant of an inverse
matrix is the reciprocal of the determinant .
Thus,

Property 6 states that if any row or column of a matrix
is multiplied by a constant, the determinant is multiplied
by the same factor. Thus,
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Example 8: Using Cramer’s Rule and
Determinant Properties to Solve a System

Find the solution to the given 3 × 3 system.

Solution

Using Cramer’s Rule, we have
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Notice that the second and third columns are
identical. According to Property 3, the determinant will
be zero, so there is either no solution or an infinite
number of solutions. We have to perform elimination to
find out.

1. Multiply equation (3) by –2 and add the result to
equation (1).

Obtaining a statement that is a contradiction means
that the system has no solution.
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254. Key Concepts & Glossary

Key Concepts

• The determinant for is .

• Cramer’s Rule replaces a variable column with the constant

column. Solutions are .

• To find the determinant of a 3×3 matrix, augment with the first
two columns. Add the three diagonal entries (upper left to
lower right) and subtract the three diagonal entries (lower left
to upper right).

• To solve a system of three equations in three variables using
Cramer’s Rule, replace a variable column with the constant
column for each desired solution:

.

• Cramer’s Rule is also useful for finding the solution of a system
of equations with no solution or infinite solutions.

• Certain properties of determinants are useful for solving
problems. For example:

◦ If the matrix is in upper triangular form, the determinant
equals the product of entries down the main diagonal.

◦ When two rows are interchanged, the determinant
changes sign.

◦ If either two rows or two columns are identical, the
determinant equals zero.

◦ If a matrix contains either a row of zeros or a column of
zeros, the determinant equals zero.
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◦ The determinant of an inverse matrix is the
reciprocal of the determinant of the matrix .

◦ If any row or column is multiplied by a constant, the
determinant is multiplied by the same factor.

Glossary

Cramer’s Rule
a method for solving systems of equations that have the same
number of equations as variables using determinants

determinant
a number calculated using the entries of a square matrix that
determines such information as whether there is a solution to
a system of equations
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255. Section Exercises

1. Explain why we can always evaluate the determinant of a square
matrix.

2. Examining Cramer’s Rule, explain why there is no unique
solution to the system when the determinant of your matrix is 0. For
simplicity, use a matrix.

3. Explain what it means in terms of an inverse for a matrix to have
a 0 determinant.

4. The determinant of matrix is 3. If you switch the
rows and multiply the first row by 6 and the second row by 2,
explain how to find the determinant and provide the answer.

For the following exercises, find the determinant.

5.

6.

7.

8.

9.

10.

11.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
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22.

23.

24.

For the following exercises, solve the system of linear equations
using Cramer’s Rule.

25.

26.

27.

28.

29.

30.

31.
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32.

33.

34.

For the following exercises, solve the system of linear equations
using Cramer’s Rule.

35.

36.

37.

38.

39.

40.
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41.

42.

43.

44.

For the following exercises, use the determinant function on a
graphing utility.

45.

46.
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47.

48.

For the following exercises, create a system of linear equations to
describe the behavior. Then, calculate the determinant. Will there
be a unique solution? If so, find the unique solution.

49. Two numbers add up to 56. One number is 20 less than the
other.

50. Two numbers add up to 104. If you add two times the first
number plus two times the second number, your total is 208

51. Three numbers add up to 106. The first number is 3 less than
the second number. The third number is 4 more than the first
number.

52. Three numbers add to 216. The sum of the first two numbers is
112. The third number is 8 less than the first two numbers combined.

For the following exercises, create a system of linear equations to
describe the behavior. Then, solve the system for all solutions using
Cramer’s Rule.

53. You invest $10,000 into two accounts, which receive 8%
interest and 5% interest. At the end of a year, you had $10,710 in your
combined accounts. How much was invested in each account?

54. You invest $80,000 into two accounts, $22,000 in one account,
and $58,000 in the other account. At the end of one year, assuming
simple interest, you have earned $2,470 in interest. The second
account receives half a percent less than twice the interest on the
first account. What are the interest rates for your accounts?

55. A movie theater needs to know how many adult tickets and
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children tickets were sold out of the 1,200 total tickets. If children’s
tickets are $5.95, adult tickets are $11.15, and the total amount of
revenue was $12,756, how many children’s tickets and adult tickets
were sold?

56. A concert venue sells single tickets for $40 each and couple’s
tickets for $65. If the total revenue was $18,090 and the 321 tickets
were sold, how many single tickets and how many couple’s tickets
were sold?

57. You decide to paint your kitchen green. You create the color of
paint by mixing yellow and blue paints. You cannot remember how
many gallons of each color went into your mix, but you know there
were 10 gal total. Additionally, you kept your receipt, and know the
total amount spent was $29.50. If each gallon of yellow costs $2.59,
and each gallon of blue costs $3.19, how many gallons of each color
go into your green mix?

58. You sold two types of scarves at a farmers’ market and would
like to know which one was more popular. The total number of
scarves sold was 56, the yellow scarf cost $10, and the purple scarf
cost $11. If you had total revenue of $583, how many yellow scarves
and how many purple scarves were sold?

59. Your garden produced two types of tomatoes, one green and
one red. The red weigh 10 oz, and the green weigh 4 oz. You have 30
tomatoes, and a total weight of 13 lb, 14 oz. How many of each type
of tomato do you have?

60. At a market, the three most popular vegetables make up 53%
of vegetable sales. Corn has 4% higher sales than broccoli, which has
5% more sales than onions. What percentage does each vegetable
have in the market share?

61. At the same market, the three most popular fruits make up 37%
of the total fruit sold. Strawberries sell twice as much as oranges,
and kiwis sell one more percentage point than oranges. For each
fruit, find the percentage of total fruit sold.

62. Three bands performed at a concert venue. The first band
charged $15 per ticket, the second band charged $45 per ticket,
and the final band charged $22 per ticket. There were 510 tickets
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sold, for a total of $12,700. If the first band had 40 more audience
members than the second band, how many tickets were sold for
each band?

63. A movie theatre sold tickets to three movies. The tickets to the
first movie were $5, the tickets to the second movie were $11, and
the third movie was $12. 100 tickets were sold to the first movie. The
total number of tickets sold was 642, for a total revenue of $6,774.
How many tickets for each movie were sold?

64. Men aged 20–29, 30–39, and 40–49 made up 78% of the
population at a prison last year. This year, the same age groups
made up 82.08% of the population. The 20–29 age group increased
by 20%, the 30–39 age group increased by 2%, and the 40–49 age

group decreased to of their previous population. Originally, the

30–39 age group had 2% more prisoners than the 20–29 age group.
Determine the prison population percentage for each age group last
year.

65. At a women’s prison down the road, the total number of
inmates aged 20–49 totaled 5,525. This year, the 20–29 age group
increased by 10%, the 30–39 age group decreased by 20%, and
the 40–49 age group doubled. There are now 6,040 prisoners.
Originally, there were 500 more in the 30–39 age group than the
20–29 age group. Determine the prison population for each age
group last year.

For the following exercises, use this scenario: A health-conscious
company decides to make a trail mix out of almonds, dried
cranberries, and chocolate-covered cashews. The nutritional
information for these items is shown below.

Fat (g) Protein (g) Carbohydrates (g)

Almonds (10) 6 2 3

Cranberries (10) 0.02 0 8

Cashews (10) 7 3.5 5.5
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66. For the special “low-carb”trail mix, there are 1,000 pieces of mix.
The total number of carbohydrates is 425 g, and the total amount
of fat is 570.2 g. If there are 200 more pieces of cashews than
cranberries, how many of each item is in the trail mix?

67. For the “hiking” mix, there are 1,000 pieces in the mix,
containing 390.8 g of fat, and 165 g of protein. If there is the same
amount of almonds as cashews, how many of each item is in the trail
mix?

68. For the “energy-booster” mix, there are 1,000 pieces in the
mix, containing 145 g of protein and 625 g of carbohydrates. If the
number of almonds and cashews summed together is equivalent to
the amount of cranberries, how many of each item is in the trail
mix?
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