9 2.1 Stem-and-Leaf Graphs, Line Graphs, Bar Graphs, and Pie Charts
Stem-and-leaf Graphs
One simple graph, the stem-and-leaf graph or stemplot, comes from the field of exploratory data analysis. It is a good choice when the data sets are small. To create the plot, divide each observation of data into a stem and a leaf. The leaf consists of a final significant digit. For example, 23 has stem two and leaf three. The number 432 has stem 43 and leaf two. Likewise, the number 5,432 has stem 543 and leaf two. The decimal 9.3 has stem nine and leaf three. Write the stems in a vertical line from smallest to largest. Draw a vertical line to the right of the stems. Then write the leaves in increasing order next to their corresponding stem.
Example 1
For Susan Dean’s spring pre-calculus class, scores for the first exam were as follows (smallest to largest):
33; 42; 49; 49; 53; 55; 55; 61; 63; 67; 68; 68; 69; 69; 72; 73; 74; 78; 80; 83; 88; 88; 88; 90; 92; 94; 94; 94; 94; 96; 100
Form a stem-and-leaf graph.
Show Answer
Stem | Leaf |
---|---|
3 | 3 |
4 | 2 9 9 |
5 | 3 5 5 |
6 | 1 3 7 8 8 9 9 |
7 | 2 3 4 8 |
8 | 0 3 8 8 8 |
9 | 0 2 4 4 4 4 6 |
10 | 0 |
The stem-and-leaf plot shows that most scores fell in the 60s, 70s, 80s, and 90s.
Eight out of the 31 scores or approximately 26% were in the 90s or 100, a fairly high number of As.
Try It
For the Park City basketball team, scores for the last 30 games were as follows (smallest to largest):
32; 32; 33; 34; 38; 40; 42; 42; 43; 44; 46; 47; 47; 48; 48; 48; 49; 50; 50; 51; 52; 52; 52; 53; 54; 56; 57; 57; 60; 61
Construct a stem plot for the data.[practice-area rows=”3″][/practice-area]
Show Answer
Stem | Leaf |
---|---|
3 | 2 2 3 4 8 |
4 | 0 2 2 3 4 6 7 7 8 8 8 9 |
5 | 0 0 1 2 2 2 3 4 6 7 7 |
6 | 0 1 |
The stemplot is a quick way to graph data and gives an exact picture of the data.
Try It
The following data show the distances (in miles) from the homes of off-campus statistics students to the college.
0.5; 0.7; 1.1; 1.2; 1.2; 1.3; 1.3; 1.5; 1.5; 1.7; 1.7; 1.8; 1.9; 2.0; 2.2; 2.5; 2.6; 2.8; 2.8; 2.8; 3.5; 3.8; 4.4; 4.8; 4.9; 5.2; 5.5; 5.7; 5.8; 8.0
Create a stem plot using the data and identify any outliers:
Show Answer
Stem | Leaf |
---|---|
0 | 5 7 |
1 | 1 2 2 3 3 5 5 7 7 8 9 |
2 | 0 2 5 6 8 8 8 |
3 | 5 8 |
4 | 4 8 9 |
5 | 2 5 7 8 |
6 | |
7 | |
8 | 0 |
The value 8.0 may be an outlier. Values appear to concentrate at one and two miles.
Watch this video to see an example of how to create a stem plot.
Example 2
A side-by-side stem-and-leaf plot allows a comparison of the two data sets in two columns. In a side-by-side stem-and-leaf plot, two sets of leaves share the same stem. The leaves are to the left and the right of the stems. The two following tables show the ages of presidents at their inauguration and at their death. Construct a side-by-side stem-and-leaf plot using this data.
Presidential Ages at Inauguration
President | Age | President | Age | President | Age |
---|---|---|---|---|---|
Washington | 57 | Lincoln | 52 | Hoover | 54 |
J. Adams | 61 | A. Johnson | 56 | F. Roosevelt | 51 |
Jefferson | 57 | Grant | 46 | Truman | 60 |
Madison | 57 | Hayes | 54 | Eisenhower | 62 |
Monroe | 58 | Garfield | 49 | Kennedy | 43 |
J. Q. Adams | 57 | Arthur | 51 | L. Johnson | 55 |
Jackson | 61 | Cleveland | 47 | Nixon | 56 |
Van Buren | 54 | B. Harrison | 55 | Ford | 61 |
W. H. Harrison | 68 | Cleveland | 55 | Carter | 52 |
Tyler | 51 | McKinley | 54 | Reagan | 69 |
Polk | 49 | T. Roosevelt | 42 | G.H.W. Bush | 64 |
Taylor | 64 | Taft | 51 | Clinton | 47 |
Fillmore | 50 | Wilson | 56 | G. W. Bush | 54 |
Pierce | 48 | Harding | 55 | Obama | 47 |
Buchanan | 65 | Coolidge | 51 |
Presidential Age at Death
President | Age | President | Age | President | Age |
---|---|---|---|---|---|
Washington | 67 | Lincoln | 56 | Hoover | 90 |
J. Adams | 90 | A. Johnson | 66 | F. Roosevelt | 63 |
Jefferson | 83 | Grant | 63 | Truman | 88 |
Madison | 85 | Hayes | 70 | Eisenhower | 78 |
Monroe | 73 | Garfield | 49 | Kennedy | 46 |
J. Q. Adams | 80 | Arthur | 56 | L. Johnson | 64 |
Jackson | 78 | Cleveland | 71 | Nixon | 81 |
Van Buren | 79 | B. Harrison | 67 | Ford | 93 |
W. H. Harrison | 68 | Cleveland | 71 | Reagan | 93 |
Tyler | 71 | McKinley | 58 | ||
Polk | 53 | T. Roosevelt | 60 | ||
Taylor | 65 | Taft | 72 | ||
Fillmore | 74 | Wilson | 67 | ||
Pierce | 64 | Harding | 57 | ||
Buchanan | 77 | Coolidge | 60 |
Show Answer
Ages at Inauguration
Ages at Inauguration | Ages at Death | |
---|---|---|
9 9 8 7 7 7 6 3 2 | 4 | 6 9 |
8 7 7 7 7 6 6 6 5 5 5 5 4 4 4 4 4 2 1 1 1 1 1 0 | 5 | 3 6 6 7 7 8 |
9 5 4 4 2 1 1 1 0 | 6 | 0 0 3 3 4 4 5 6 7 7 7 8 |
7 | 0 0 1 1 1 4 7 8 8 9 | |
8 | 0 1 3 5 8 | |
9 | 0 0 3 3 |
Example 3
The table shows the number of wins and losses the Atlanta Hawks have had in 42 seasons. Create a side-by-side stem-and-leaf plot of these wins and losses.
Losses | Wins | Year | Losses | Wins | Year |
---|---|---|---|---|---|
34 | 48 | 1968–1969 | 41 | 41 | 1989–1990 |
34 | 48 | 1969–1970 | 39 | 43 | 1990–1991 |
46 | 36 | 1970–1971 | 44 | 38 | 1991–1992 |
46 | 36 | 1971–1972 | 39 | 43 | 1992–1993 |
36 | 46 | 1972–1973 | 25 | 57 | 1993–1994 |
47 | 35 | 1973–1974 | 40 | 42 | 1994–1995 |
51 | 31 | 1974–1975 | 36 | 46 | 1995–1996 |
53 | 29 | 1975–1976 | 26 | 56 | 1996–1997 |
51 | 31 | 1976–1977 | 32 | 50 | 1997–1998 |
41 | 41 | 1977–1978 | 19 | 31 | 1998–1999 |
36 | 46 | 1978–1979 | 54 | 28 | 1999–2000 |
32 | 50 | 1979–1980 | 57 | 25 | 2000–2001 |
51 | 31 | 1980–1981 | 49 | 33 | 2001–2002 |
40 | 42 | 1981–1982 | 47 | 35 | 2002–2003 |
39 | 43 | 1982–1983 | 54 | 28 | 2003–2004 |
42 | 40 | 1983–1984 | 69 | 13 | 2004–2005 |
48 | 34 | 1984–1985 | 56 | 26 | 2005–2006 |
32 | 50 | 1985–1986 | 52 | 30 | 2006–2007 |
25 | 57 | 1986–1987 | 45 | 37 | 2007–2008 |
32 | 50 | 1987–1988 | 35 | 47 | 2008–2009 |
30 | 52 | 1988–1989 | 29 | 53 | 2009–2010 |
Show Answer
Number of losses
Atalanta Hawks Wins and Leaves | ||
Number of Wins | Number of Loses | |
3 | 1 | 9 |
9 8 8 6 5 | 2 | 5 5 9 |
8 7 6 6 5 5 4 3 1 1 1 1 0 | 3 | 0 2 2 2 2 4 4 5 6 6 6 9 9 9 |
8 8 7 6 6 6 3 3 3 2 2 1 1 0 | 4 | 0 0 1 1 2 4 5 6 6 7 7 8 9 |
7 7 6 3 2 0 0 0 0 | 5 | 1 1 1 2 3 4 4 6 7 |
6 | 9 |
Line Graph
Another type of graph that is useful for specific data values is a line graph.
Example 1
In a survey, 40 mothers were asked how many times per week a teenager must be reminded to do his or her chores.
Number of times teenager is reminded | Frequency |
---|---|
0 | 2 |
1 | 5 |
2 | 8 |
3 | 14 |
4 | 7 |
5 | 4 |
Show Answer
Try It
In a survey, 40 people were asked how many times per year they had their car in the shop for repairs.
Number of times in shop | Frequency |
---|---|
0 | 7 |
1 | 10 |
2 | 14 |
3 | 9 |
Construct a line graph.
Show Answer
Bar Graphs & Pie Charts
Bar graphs consist of bars that are separated from each other. The bars can be rectangles or they can be rectangular boxes (used in three-dimensional plots), and they can be vertical or horizontal.
Pie Charts is another method to “visualize” the data. Each proportion on a pie chart represents the proportion of the corresponding class in the data set.
Example 1
By the end of 2011, Facebook had over 146 million users in the United States. The table shows three age groups, the number of users in each age group, and the proportion (%) of users in each age group. Construct a bar graph and a pie chart using this data.
Age groups | Number of Facebook users | Proportion (%) of Facebook users |
---|---|---|
13–25 | 65,082,280 | 45% |
26–44 | 53,300,200 | 36% |
45–64 | 27,885,100 | 19% |
Bar Graph
The bar graph has age groups represented on the x-axis and proportions on the y-axis.