131 Identify vertical and horizontal asymptotes
By looking at the graph of a rational function, we can investigate its local behavior and easily see whether there are asymptotes. We may even be able to approximate their location. Even without the graph, however, we can still determine whether a given rational function has any asymptotes, and calculate their location.
Vertical Asymptotes
The vertical asymptotes of a rational function may be found by examining the factors of the denominator that are not common to the factors in the numerator. Vertical asymptotes occur at the zeros of such factors.
How To: Given a rational function, identify any vertical asymptotes of its graph.
- Factor the numerator and denominator.
- Note any restrictions in the domain of the function.
- Reduce the expression by canceling common factors in the numerator and the denominator.
- Note any values that cause the denominator to be zero in this simplified version. These are where the vertical asymptotes occur.
- Note any restrictions in the domain where asymptotes do not occur. These are removable discontinuities.
Example 5: Identifying Vertical Asymptotes
Find the vertical asymptotes of the graph of
Solution
First, factor the numerator and denominator.
To find the vertical asymptotes, we determine where this function will be undefined by setting the denominator equal to zero:
Neither

Removable Discontinuities
Occasionally, a graph will contain a hole: a single point where the graph is not defined, indicated by an open circle. We call such a hole a removable discontinuity.
For example, the function
Notice that

A General Note: Removable Discontinuities of Rational Functions
A removable discontinuity occurs in the graph of a rational function at
Example 6: Identifying Vertical Asymptotes and Removable Discontinuities for a Graph
Find the vertical asymptotes and removable discontinuities of the graph of
Solution
Factor the numerator and the denominator.
Notice that there is a common factor in the numerator and the denominator,
Notice that there is a factor in the denominator that is not in the numerator,

The graph of this function will have the vertical asymptote at
Horizontal asymptotes
While vertical asymptotes describe the behavior of a graph as the output gets very large or very small, horizontal asymptotes help describe the behavior of a graph as the input gets very large or very small. Recall that a polynomial’s end behavior will mirror that of the leading term. Likewise, a rational function’s end behavior will mirror that of the ratio of the leading terms of the numerator and denominator functions.
There are three distinct outcomes when checking for horizontal asymptotes:
Case 1: If the degree of the denominator > degree of the numerator, there is a horizontal asymptote at y = 0.
In this case, the end behavior is
Figure 12. Horizontal Asymptote y = 0 when
Case 2: If the degree of the denominator < degree of the numerator by one, we get a slant asymptote.
In this case, the end behavior is
To find the equation of the slant asymptote, divide
Figure 13. Slant Asymptote when
Case 3: If the degree of the denominator = degree of the numerator, there is a horizontal asymptote at
In this case, the end behavior is
Figure 14. Horizontal Asymptote when
Notice that, while the graph of a rational function will never cross a vertical asymptote, the graph may or may not cross a horizontal or slant asymptote. Also, although the graph of a rational function may have many vertical asymptotes, the graph will have at most one horizontal (or slant) asymptote.
It should be noted that, if the degree of the numerator is larger than the degree of the denominator by more than one, the end behavior of the graph will mimic the behavior of the reduced end behavior fraction. For instance, if we had the function
with end behavior
the end behavior of the graph would look similar to that of an even polynomial with a positive leading coefficient.
A General Note: Horizontal Asymptotes of Rational Functions
The horizontal asymptote of a rational function can be determined by looking at the degrees of the numerator and denominator.
- Degree of numerator is less than degree of denominator: horizontal asymptote at y = 0.
- Degree of numerator is greater than degree of denominator by one: no horizontal asymptote; slant asymptote.
- Degree of numerator is equal to degree of denominator: horizontal asymptote at ratio of leading coefficients.
Example 7: Identifying Horizontal and Slant Asymptotes
For the functions below, identify the horizontal or slant asymptote.
Solution
For these solutions, we will use
: The degree of , so we can find the horizontal asymptote by taking the ratio of the leading terms. There is a horizontal asymptote at or . : The degree of and degree of . Since by 1, there is a slant asymptote found at .
Example 8: Identifying Horizontal Asymptotes
In the sugar concentration problem earlier, we created the equation
Find the horizontal asymptote and interpret it in context of the problem.
Solution
Both the numerator and denominator are linear (degree 1). Because the degrees are equal, there will be a horizontal asymptote at the ratio of the leading coefficients. In the numerator, the leading term is t, with coefficient 1. In the denominator, the leading term is 10t, with coefficient 10. The horizontal asymptote will be at the ratio of these values:
This function will have a horizontal asymptote at
This tells us that as the values of t increase, the values of C will approach
Example 9: Identifying Horizontal and Vertical Asymptotes
Find the horizontal and vertical asymptotes of the function
Solution
First, note that this function has no common factors, so there are no potential removable discontinuities.
The function will have vertical asymptotes when the denominator is zero, causing the function to be undefined. The denominator will be zero at
The numerator has degree 2, while the denominator has degree 3. Since the degree of the denominator is greater than the degree of the numerator, the denominator will grow faster than the numerator, causing the outputs to tend towards zero as the inputs get large, and so as

A General Note: Intercepts of Rational Functions
A rational function will have a y-intercept when the input is zero, if the function is defined at zero. A rational function will not have a y-intercept if the function is not defined at zero.
Likewise, a rational function will have x-intercepts at the inputs that cause the output to be zero. Since a fraction is only equal to zero when the numerator is zero, x-intercepts can only occur when the numerator of the rational function is equal to zero.
Example 10: Finding the Intercepts of a Rational Function
Find the intercepts of
Solution
We can find the y-intercept by evaluating the function at zero
The x-intercepts will occur when the function is equal to zero:
The y-intercept is

Try It 7
Given the reciprocal squared function that is shifted right 3 units and down 4 units, write this as a rational function. Then, find the x– and y-intercepts and the horizontal and vertical asymptotes.